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MODELLING OPERATIONAL ARCHETYPES  
FOR CORPORATE FLEET ELECTRIFICATION
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Abstract. The decarbonisation of corporate vehicle fleets is a central challenge in achieving Europe’s climate  
neutrality targets under the European Green Deal. Although corporate vehicles constitute only a share of the 
total fleet, they account for a disproportionate fraction of total mileage and associated CO₂ emissions. Despite 
fiscal incentives and regulatory support, the adoption of battery electric vehicles (BEVs) within the corporate 
sector remains significantly below private uptake, primarily due to uncertainty about operational feasibility and 
charging constraints. This study presents a data-driven framework for assessing fleet electrification potential based  
on empirical driving data and simulation-based modelling. Using vehicle usage records from the carmonitor.
eu telematics platform, the research identifies four distinct operational archetypes within corporate fleets, 
differentiated by travel intensity, trip fragmentation, and temporal driving structure. These archetypes are derived 
through a clustering methodology employing standardised behavioural indicators, principal component analysis 
(PCA), and k-means segmentation, validated by silhouette and Davies–Bouldin indices. Results demonstrate 
pronounced heterogeneity in fleet operation, with daily driving distances, trip frequency, and vehicle availability 
varying substantially across clusters. Scenario-based modelling reveals that electrification feasibility depends not 
only on total mileage but also on temporal driving regularity and charging opportunity windows. Vehicles with 
predictable daily cycles and long overnight parking are found to be most suitable for early electrification, while 
high-mileage or irregular-use vehicles require access to fast-charging infrastructure and larger battery capacities.  
The study concludes that segmenting corporate fleets by operational archetype provides a robust analytical 
foundation for transition planning, enabling tailored recommendations for vehicle selection, charging  
infrastructure, and total cost of ownership optimisation. By linking empirical usage data with simulation and scenario 
modelling, the paper contributes a replicable methodological approach for evidence-based fleet decarbonisation 
strategies across Europe.

Keywords: Electric Vehicles (EV), Fleet electrification, Data-driven decision-making, Corporate sustainability and 
mobility, Car Fleet Operational Archetypes.
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Nomenclature
AC Alternating Current
AIC Akaike Information Criterion
BEV Battery Electric Vehicle
BIC Bayesian Information Criterion
CO₂ Carbon Dioxide
CV Coefficient of Variation
DC Direct Current
EM Expectation–Maximisation
EU European Union

EEA European Environment Agency
EV Electric Vehicle

GHG Greenhouse Gases
GMM Gaussian Mixture Model

ICE Internal Combustion Engine
IQR Interquartile Range
JEL Journal of Economic Literature

PCA Principal Component Analysis
SD Standard Deviation

TCO Total Cost of Ownership
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1.	 Introduction 
Efforts to decarbonise transport have accelerated as 

governments and industries seek to align with global 
climate targets. In Europe, the European Climate 
Law establishes a legal commitment to achieve 
climate neutrality by 2050 as part of the European 
Green Deal (Regulation (EU) 2021/1119 of the 
European Parliament and of the Council of 30 June 
2021 Establishing the Framework for Achieving Climate 
Neutrality and Amending Regulations (EC)  
No 401/2009 and (EU) 2018/1999 (‘European Climate 
Law’), 2021), identifying road transport as a key sector 
requiring rapid emission reductions. While most sectors 
have reduced greenhouse gas (GHG) emissions over 
recent decades, transport remains an outlier – responsible 
for about 25% of total EU emissions in 2022 and still  
rising (European Environment Agency, 2024).

Corporate vehicles, despite benefiting from fiscal 
incentives such as tax exemptions in many EU 
Member States (Transport & Environment, n.d.), 
have contributed relatively little to emission reduction  
efforts. They represent around 60% of all new car 
registrations in the EU (Héliot, & Ferrara, 2025) and, 
because they are driven roughly twice as much as private 
cars, account for 74% of new vehicle CO₂ emissions 
(Cornelis & Antich, 2023). Yet, battery-electric vehicle 
(BEV) uptake in this segment remains modest. In 2024, 
BEVs made up only 16.3% of new corporate registrations 
in Germany versus 25.6% among private users; in 
France the figures were 12.0% and 22.1%, respectively; 
and in Denmark, 26.1% compared to 53.1% (Antich, 
Arnau Oliver, 2024). The European Commission 
notes that electrifying these high-mileage fleets could 
achieve substantial emission reductions within a short 
timeframe (Decarbonise Corporate Fleets, 2025).

Corporate fleets are increasingly recognised as 
pivotal to accelerating the EV transition. Their shorter 
replacement cycles supply the second-hand market  
with affordable used EVs, thus expanding access for 
private consumers. Estimates suggest that full corporate 
fleet electrification could add nearly seven million  
used EVs to Europe’s market by 2035 (Cornelis & 
Antich, 2025).

Previous research on private vehicle electrification  
has explored financial factors such as vehicle cost 
(Coffman et al., 2017), charging infrastructure 
availability (Haustein et al., 2021), and incentives – 
including in Latvia (Rubenis et al., 2019) – as well as non-
financial influences such as social norms, environmental 
awareness, and aesthetics (Krishnan & Koshy, 2021), 
without going into details of various subsections  
of the fleets and suitability of EVs for all of those. 

This article aims to facilitate the transition of corporate 
fleets from internal combustion engine (ICE) vehicles 
to EVs, particularly looking at how to evaluate the 
suitability of an EV as a direct replacement for an existing 

ICE vehicle. This concept builds on the framework 
introduced in "The Road to Zero-Emission Fleets: 
The Role of Data-Driven Decision-Making," (Rubenis 
et al., 2025) which outlined the methodological basis 
for integrating empirical fleet monitoring, simulation 
modelling, and decision-support analytics into 
corporate fleet transition planning.

Even though for corporate fleets adoption is primarily 
determined by economic feasibility, typically assessed 
through Total Cost of Ownership (TCO) models  
(Al-Alawi & Bradley, 2013) and further influenced by 
fiscal measures and incentives (Di Foggia, 2021), first 
of all, understanding how these corporate vehicles are 
used, is essential for designing effective electrification 
strategies. 

Real-world fleet operations are inherently 
heterogeneous, reflecting a wide range of trip patterns, 
travel intensities, and temporal behaviours that 
cannot be adequately captured by aggregated averages 
or single performance indicators. To address this 
complexity, we have employed clustering techniques 
to identify groups of vehicles with similar operational 
characteristics, or archetypes, based on empirical 
driving data. This data-driven segmentation enables the 
differentiation of fleet users according to their mobility 
behaviour – such as daily distance, trip frequency, 
and schedule regularity – and provides a structured 
foundation for evaluating electrification suitability.  
By modelling these operational archetypes, it becomes 
possible to align vehicle selection, charging strategies, 
and economic assessments with the actual patterns 
of use observed in the field, rather than relying on 
generalized assumptions or static usage profiles.

2.	 Methods

2.1. Driving Simulation 

Dataset
The study relies on operational logs exported from 

the client’s existing telematics platform carmonitor.
eu. This European vehicle data repository provides 
comprehensive information on fleet composition and 
vehicle utilisation patterns. Data are provided as per-
vehicle, semicolon-delimited CSV files and contain 
a time-ordered sequence of contiguous usage "events", 
where an event is defined as a period during which the 
vehicle remains in a single operational state. Two states 
are used in the raw export: driving for intervals when 
the vehicle is in motion and parked for intervals when 
the vehicle is stationary.

Each record contains six fields: Car_ID, Start, End, 
Event, Distance KM, and Average Speed. Start and  
End are timestamp strings indicating the beginning and 
end of the event interval as recorded by the platform. 
The timestamps are supplied without explicit timezone 
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metadata by the export; for analysis, we treat them as 
local clock time as provided by the fleet operator and 
keep them consistent across all vehicles. The Event 
is a categorical label taking values, driving or parked. 
Distance KM records the total distance attributed by 
the platform to the event interval in kilometres; by 
convention, this field is populated for driving intervals 
and left blank in the parked state. Average Speed is the 
event-level average in kilometres per hour, likewise 
typically populated for driving intervals and absent for 
parked intervals.

The fundamental unit in the raw data is an interval, 
not an instantaneous point sample. That is, each 
row describes a span [Start, End) during which the 
operational state is assumed constant, and for which 
aggregate metrics (distance and average speed, when 
applicable) are reported. Intervals may vary in length 
from minutes to hours, and consecutive intervals are 
expected to tile the observation timeline for each vehicle 
with minimal gaps or overlaps; however, as with many 
operational datasets, occasional gaps (no state reported) 
or overlaps (partly redundant intervals) can occur 
due to connectivity, device resets, or post-processing.  
The export uses a consistent decimal and unit  
convention (kilometres, kilometres per hour).

As received, parked intervals contain no distance or 
speed information by design, and a small proportion  
of driving intervals may also have missing values in one 
of those fields; these are handled during preprocessing 
and imputation, which are described in the next 
subsection.

2.2. Clustering Methodology:  
General Approach

The objective of the clustering analysis is to  
identify groups of vehicles with comparable patterns of 
daily use. Vehicles that are used in a similar way – for 
example, driven mainly in the morning and evening 
with long overnight parking, or used continuously 
throughout the working day – can be expected to have 
similar charging opportunities and energy profiles. 
Clustering therefore provides an analytical foundation 
for the subsequent simulation and economic modelling 
of the fleet.

Clustering in this study is used to identify groups 
of vehicles with similar patterns of daily use, forming 
behavioural archetypes that serve as a foundation 
for fleet electrification analysis. The process begins 
by converting detailed driving and parking records 
into daily indicators such as distance, trip frequency, 
and time-of-day activity. Each vehicle’s long-term 
behaviour is then summarised through aggregated 
statistics, standardised to ensure comparability. Using 
these behavioural profiles, vehicles are grouped with 
the k-means algorithm, and the optimal number of 
clusters is selected based on internal validity measures. 

The resulting clusters represent distinct usage types – 
such as commuter, service, or low-utilisation vehicles – 
providing a structured basis for subsequent modelling 
of energy demand and transition scenarios.

2.3. Feature Construction and Aggregation 

Data representation
The transformation of raw vehicle event logs into 

consistent numerical features is a critical step before 
clustering. The aim is to represent each vehicle’s 
daily behaviour in a way that is both comparable 
across vehicles and robust to differences in trip 
frequency or observation period length. This process 
consists of two levels: (a) constructing day-level 
indicators from individual driving and parking events,  
and (b) aggregating these daily measures into long-term 
vehicle-level descriptors.

Let  = …1, ,n  denote the set of vehicles in the 
dataset, and let i iT= …1, ,  represent the set of 
observation days for vehicle i .

Construction of day-level features
The event log for each vehicle i contains consecutive 

records s e d vij ij ij ij ij, , , ,ξ( ), where sij and eij
denote the start and end timestamps of interval j , 
ξij ∈driving parked, is the event type, dij  is the 
distance travelled (km) if the event is “driving”, and vij is 
the average speed (km·h-¹).

The first step transforms this sequence into a set of 
daily statistics representing how each vehicle is used 
during each day t .

For every vehicle i and day t i∈ , we compute 
a vector of p features
x total distance driving time parking time avg spit it it it= [ , , ,_ _ _ _ eeedit ,

x total distance driving time parking time avg spit it it it= [ , , ,_ _ _ _ eeedit ,

morning share evening share night parkingit it it_ _ _ �, , , ]   (1)

These quantities are derived as follows:
–	 Total daily distance is the sum of all driving intervals’ 
distances dij within the day.
–	 Number of trips counts transitions from parked to 
driving states.
–	 Driving and parking times are computed as the 
total durations of corresponding event types within the 
24-hour window.
–	 Average speed is the distance-weighted mean of vij
over all driving intervals.
–	 Morning and evening shares represent the 
proportion of total daily distance occurring between  
6–10 a.m. and 4–8 p.m., respectively, capturing 
commuting intensity.
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–	 Night parking hours measure the total duration of 
parking between 10 p.m. and 6 a.m., which approximates 
overnight availability for charging.

Collectively, these indicators summarise when, how 
far, and how intensively each vehicle is used during 
a typical day. They form the basis for comparing 
operational roles between vehicles.

Aggregation to vehicle-level profiles
Because each vehicle is observed over many days, the 

daily indicators { }xit t i∈ are summarised into a vehicle-
level fingerprint using robust statistical operators that  
are resistant to outliers and missing data.

Formally, the aggregation operator Ф � ⋅( )maps the set 
of daily observations for vehicle i into a fixed-length 
feature vector:
z xi it t i
= =∈¦ ({ } )

median x IQR x p xi i i1 1 195( ) ( ) ( ) … , , , .


     (2)
For each daily indicator we compute three summary 

measures: the median (typical value), the interquartile 
range (variability), and the 95th percentile (upper limit of 
observed intensity). These statistics capture not only the 
average behaviour but also the stability and extremes of 
usage. For example, a vehicle with a low median distance 
but a high 95th percentile likely performs occasional 
long trips despite mostly short travel.

The aggregation yields the matrix

Z z z zn
n q= … ∈ ×[ , , , ] ,1 2

                                            (3)
where n  is the number of vehicles and q the number 

of aggregated features per vehicle. This matrix is the 
direct input for clustering.

Normalisation and scaling
Since the features zi are expressed in different units 

(kilometres, hours, shares), we standardise them before 
comparing vehicles. 

For each feature j , let ∝j  and s j  denote robust 
measures of central tendency and dispersion (typically 
the median and median absolute deviation), and 
standardise the data as

Z
Z

sij
ij j

j

=
−µ

.

To limit the influence of extreme values, we apply 
a winsorisation operator Wτ ⋅( )  that caps the highest 
and lowest quantiles (e.g. at 2.5 % and 97.5 %).  

The resulting matrix Z W Z= ( )τ
  provides a robust, 

scale-free basis for distance calculations.
If several features are highly correlated, we apply 

a principal component analysis (PCA) transformation. 
PCA projects the data onto a lower-dimensional 
orthogonal space Y ZU=  , where U q r∈ × contains 
the first r  principal component loadings capturing 

a target proportion (typically 90 %) of total variance. 
The clustering is then performed in this reduced feature 
space.

(d) Outputs of the preprocessing pipeline
The result of this multi-stage preprocessing is a dataset 

of vehicle-level behaviour profiles Y Y Yn= …[ , , ]1
, each 

representing a single vehicle by its typical usage statistics

3.	 Clustering Algorithm

Clustering aims to partition the vehicles into K
groups such that vehicles within the same cluster have 
similar use patterns and those in different clusters are 
dissimilar.

The most straightforward and widely used approach 
is the k-means algorithm, which minimises the total 
within-cluster variance:

min
{ } ,{ }

,
m C

K
k

K

i C
i k

k k
K

k k
K

k

J Y m
= =

= −
= ∈
∑∑

1 1 1

2
                             (4)

where mk is the centroid (mean profile) of cluster k , 
and Ck is the set of vehicles assigned to it.

In practice, the optimisation is performed iteratively: 
vehicles are first assigned to the nearest centroid, 
centroids are recalculated as the average of the assigned 
members, and the process repeats until assignments 
stabilise.

Because k-means can converge to local minima, it is 
initialised multiple times with random seeds, and the 
configuration with the smallest objective JK is retained.

As a robustness check, a Gaussian Mixture Model 
(GMM) can also be fitted, which allows for probabilistic 
rather than hard assignments. In that case, the likelihood

L N˜ £( ) = ( )
= =
∑ ∑
i

n

k

K

k i k kY
1 1

log( , )π µ                        (5)

is maximised using the Expectation–Maximisation 
(EM) algorithm, yielding posterior probabilities γik
that vehicle i  belongs to cluster k .

Determining the number of clusters

The optimal number of clusters K *  is selected by 
evaluating a range of candidate values using several 
complementary indices.

For k-means, we compute the silhouette coefficient 
S K( ), which measures how similar each observation 
is to its own cluster compared with other clusters, and 
the Davies–Bouldin index DB K( ), which penalises 
overlapping clusters.

The selected number of clusters K *  is the smallest 
value that provides both high silhouette scores and 
low DB , corresponding to a distinct yet parsimonious 
segmentation.
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For GMMs, we additionally use information criteria 

such as the Bayesian Information Criterion (BIC) and 
the Akaike Information Criterion (AIC).

To test the stability of the clustering solution, 
we apply a resampling approach by repeating the  
clustering on bootstrapped subsets of the data and 
measuring the Adjusted Rand Index between solutions. 
The final K * balances internal fit, interpretability, and 
stability.

Cluster assignment and interpretation
Once the cluster structure is defined, each vehicle is 

assigned to the nearest centroid:
c Y m i ni

k
i k= − = …argmin  , , , ,1                            (6)

and, when applicable, its confidence is measured 
by the relative distance margin or by the posterior 
probability maxk ikγ  from the GMM.

Cluster characteristics are then examined in the 
original feature space. For each cluster k , we compute 
the median and variability of key indicators (e.g. daily 
distance, number of trips, parking hours). These 
statistics form the cluster profile

z z i Ck i k

É

= ∈{ }median : ,                                               (7)
which serves as a basis for interpretation. Descriptive 

tags such as “commuter-type vehicle”, “urban operative 
vehicle”, or “low-utilisation pool car” are assigned using 
heuristic rules based on these median values and known 
operational patterns.

Vehicles whose profiles lie far from any cluster 
centroid – identified by Euclidean distances – 
are flagged as potential outliers rather than forced into 
a cluster.

4.	 Fleet Descriptive Statistics

4.1 Overview  
of Fleet-Level Descriptive Statistics

The descriptive statistics summarise the fundamental 
operational characteristics of the analysed corporate 
vehicle fleet and establish the empirical context for 
subsequent segmentation.

Overall, the fleet demonstrates moderate daily 
utilisation with substantial variation among vehicles. 
The median of vehicle-level daily distances was 48.0 km 
(SD = 10.6), with the central 50% of vehicles ranging 
between 41 and 54.5 km. Nevertheless, higher-intensity 
users were clearly present: the 95th percentile of 
daily distance reached 158.3 km (SD = 56.2), and 
extreme cases exceeded 290 km. These values indicate 
that while most vehicles follow moderate, stable use 
patterns, a smaller subset engages in significantly more 
demanding operational cycles, likely reflecting field 
service or inter-urban travel.

The frequency of daily trips was consistent with 
light-duty commercial or commuter-type operation.  
The median number of trips per day was 2.0 (M = 2.44, 
SD = 0.69), confirming that most vehicles perform 
one outbound and one return trip per day.  
The mean number of trips per day was 3.35  
(SD = 0.52), showing that some vehicles undertake 
additional intermediate journeys. The upper quartile 
reached approximately 3.6 trips per day, with occasional 
peaks above four, which may correspond to multi-stop 
service routes.

The duration and intensity of daily operation 
were limited relative to the total time vehicles 
spent inactive. Median driving time was 1.57 hours  

Тable 1
Descriptive fleet statistics

Indicator Mean SD Median IQR (P25–P75) Range (min–max)
Median daily distance (km) 48.01 10.56 48 41.0–54.5 26.5–73.0
95th percentile daily distance (km) 158.33 56.18 139.3 115.3–198.3 73.3–297.2
Median trips per day 2 0.69 2 2.0–3.0 2.0–4.0
Mean trips per day 3.35 0.52 3.37 2.97–3.65 2.41–4.90
Median driving time (h) 1.57 0.3 1.57 1.34–1.75 0.84–2.39
Median parked time (h) 22.43 0.3 22.43 22.25–22.66 21.61–23.16
Drive–park ratio 0.06 0.01 0.07 0.06–0.07 0.03–0.10
Night parking duration (h) 16.26 1.19 15.91 15.40–16.74 14.36–20.18
Midday parking duration (h) 3.92 0.69 4.1 3.82–4.37 2.02–4.85
Median trip distance (km) 15.8 3.68 16.23 13.56–18.40 7.0–23.5
95th percentile trip distance (km) 23 5.29 23.5 19.82–26.66 10.25–33.22
Median trip duration (h) 0.54 0.13 0.56 0.51–0.64 0.24–0.76
95th percentile trip duration (h) 0.73 0.16 0.77 0.66–0.83 0.34–0.96
Coefficient of variation (daily km) 0.8 0.13 0.8 0.70–0.89 0.51–1.13
Start-time entropy (bits) 3.76 0.08 3.77 3.71–3.81 3.59–3.98
Share of weekend distance (%) 24.9 4.86 24.2 21.7–27.9 13.9–38.5
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(SD = 0.30), while median parked time reached 
22.43 hours (SD = 0.30), producing a mean drive–
park ratio of 0.06 (SD = 0.01). This strong imbalance 
between motion and idleness demonstrates that the 
vehicles are available for charging during a large portion 
of each day, especially overnight. Indeed, vehicles 
were parked for an average of 16.26 hours per night  
(SD = 1.19), supplemented by roughly 3.9 hours of 
midday parking (SD = 0.69).

Trip-level indicators further characterise the short-
distance nature of daily operations. The median trip 
length averaged 15.8 km (SD = 3.7), while the 95th 
percentile of trip distance was 23.0 km (SD = 5.3).  
Trip durations were correspondingly brief, with  
median trip times of 0.54 hours (≈32 minutes) and 
a 95th percentile of 0.73 hours (≈44 minutes). These 
results suggest that most travel occurs within a local 
or regional radius well within the typical range of 
contemporary battery-electric vehicles.

Temporal regularity measures highlight moderate 
variability in usage. The coefficient of variation in 
daily distance averaged 0.80 (SD = 0.13), indicating 
that many vehicles alternate between light and heavy 
usage days. The mean start-time entropy of 3.76 bits 
(SD = 0.08) suggests that departure times are partly 
predictable – typical of routine operations – yet still allow  
flexibility across weekdays. Weekend use was limited, 
comprising roughly 25% of total distance (SD = 0.05), 
confirming that the fleet’s activity is predominantly 
weekday-based.

Taken together, these descriptive statistics reveal 
a heterogeneous operational structure encompassing 
both predictable, low-intensity users and irregular, 
high-mileage vehicles. The coexistence of such distinct 

behavioural profiles indicates that the fleet cannot be 
adequately represented by a single operational model. 
This heterogeneity provides the empirical foundation 
for the clustering analysis that follows, which classifies 
vehicles into operational archetypes to inform 
electrification suitability assessments and charging 
strategy development. 

4.2 Determination  
of the Optimal Number of Clusters

To identify the most appropriate number of 
behavioural clusters, a sensitivity analysis was conducted 
for K = 2 to K =10 using two complementary 
diagnostics: the within-cluster sum of squares (inertia) 
and the mean silhouette coefficient. The results are 
summarised in Figure 2.

The inertia values decreased monotonically from 
1862 at K = 2  to 643 at K =10 , reflecting the 
expected reduction in within-cluster variance as more 
clusters are added. The elbow method therefore focuses 
on the point where the rate of improvement begins to 
flatten, indicating diminishing returns from additional 
partitions. In this dataset, a pronounced inflection was 
visible between K = 2 and K = 4 , after which the 
curve gradually levelled off, suggesting that four clusters 
capture most of the structure present in the data.

The silhouette coefficients exhibited a similar pattern. 
The highest mean silhouette value (0.48) was obtained 
for the two-cluster solution, indicating strong separation 
at the coarsest partition. However, this configuration 
merged clearly distinct behavioural groups and was 
therefore judged overly simplistic. The silhouette value 
declined to 0.37 for K = 3 and to 0.24 for K = 4 , with 

Figure 1. Fleet-wide Average Distance Driven in 15-Minute Intervals
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only marginal changes thereafter (0 20 0 24. .≤ ( ) ≤S K  
for K = 5 –10). This flattening indicates that increasing 
the number of clusters beyond four yields no substantive 
improvement in internal cohesion.

Taken together, the elbow shape of the inertia curve 
and the stabilisation of the silhouette score beyond 

K = 4  both indicate that a four-cluster solution offers 
the best compromise between explanatory power 
and parsimony. This configuration provides sufficient 
granularity to distinguish major operational patterns 
while maintaining clear interpretability. Consequently, 
K = 4 was selected as the optimal number of clusters 

for subsequent analysis and interpretation.

4.3 The Fleet
The clustering solution separates vehicles primarily 

along two orthogonal dimensions of use: the intensity 

of daily distance accumulation and the fragmentation of 
that distance into trips. 4 clusters were observed.

Cluster description
Cluster 0: high-mileage, high-variability users
Vehicles assigned to Cluster 0 exhibit the highest 

intensity of daily distance, reflected by strong 
positive loadings for the 95th percentile of daily  
kilometres, the standard deviation of daily kilometres, 
and the mean and median daily kilometres.  
In the trips-per-day versus distance plane these vehicles 
occupy the high-distance region, with trip counts 
that can vary but are less diagnostic than the sheer  
volume of kilometres. This archetype is consistent 
with long-range service, field operations, or inter-
urban logistics in which routing is dynamic and peaks  
of very long travel days occur with meaningful  
frequency.

Cluster 1: low-utilization, schedule-regular 
commuters

Figure 2. Cluster selection diagnostics

Figure 3. Vechicle Use Cluster Analysis
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Cluster 1 sits at the opposite end of the utilization 

spectrum. The salient features all load negatively: 
coefficient of variation and standard deviation of daily 
kilometres, and the number of trips per day are all 
below fleet averages. Start-time entropy is also lower, 
indicating a more regimented schedule with departures 
concentrated in narrow time windows. The share of 
weekend kilometres is depressed, which reinforces 
the interpretation of routine weekday use. In the two-
dimensional plot, these vehicles populate the low-
distance, low-trips region.

Cluster 2: multi-stop urban duty with short trip 
lengths

Cluster 2 is distinguished by simultaneous signals 
of high fragmentation and short trip characteristics. 
Median trips per day load strongly positive, while 
median and 95th percentile trip distances and durations 
load strongly negative. Mean mid-day parking time 
and the 95th percentile of mid-day maximum parking 
duration are both notably below average, indicating 
that vehicles remain active rather than stationary 
during business hours. In contrast, night-time parking 
accumulates above-average hours, consistent with 
depot dwell or home garaging. Plotted against trips per 
day and distance, these vehicles gravitate to the high-
trips, low-distance corner.

Cluster 3: low-frequency, long-duration trips with 
mid-day dwell

Vehicles in Cluster 3 display above-average trip 
durations at both the median and the upper tail, 
accompanied by higher median driving hours and 
a modestly elevated mid-day parking total. The median 
number of trips per day is below average, and median 
parked hours are somewhat reduced, suggesting 
days organized around one or a few longer journeys 
interspersed with a notable mid-day stop. In the 
visualization these vehicles appear at lower trip counts 
with moderate distances that are achieved through 
longer, less fragmented drives.

Comparative Interpretation
Comparing all four clusters, two dimensions emerge 

as dominant in defining fleet heterogeneity: daily 
driving intensity and temporal dispersion. Cluster 
0 occupies the high-intensity, long-duration extreme; 
Cluster 1 represents low-intensity, time-bound 
commuting; Cluster 2 captures high fragmentation 
within a concentrated workday; and Cluster 3 combines 
moderate distance with extended driving windows. 
Weekday and weekend contrasts are most pronounced 
in Clusters 0 and 2, where weekend activity exceeds 
weekday levels, while Cluster 1 remains strongly 
weekday-oriented.

The average 15-minute distance profiles reveal distinct 
operational signatures for each cluster, reflecting the 
diversity of use patterns within the analysed corporate 
fleet. The graphs display the mean distance travelled 
across 15-minute intervals throughout the day, 

separately for weekdays (blue) and weekends (red), 
with shaded areas indicating the 10th–90th percentile 
spread. These results highlight significant variation in 
both daily intensity and temporal structure of vehicle 
use across the four clusters.

Cluster 0 is characterised by the most intensive 
and prolonged daily activity profile. Weekday driving 
begins gradually around 06:30, peaks between 07:30  
and 09:00, and remains consistently high throughout 
business hours, with sustained movement continuing 
well into the evening. Weekend activity is even 
broader, spanning nearly the entire daytime period and  
reaching higher intensity levels than on weekdays.  
The extended operational window and weak midday 
trough suggest irregular routing or service-oriented 
use with minimal downtime. This pattern corresponds 
to long-distance, high-mileage vehicles that require 
substantial daily energy input and access to fast- 
charging options.

In contrast, Cluster 1 displays a highly structured 
and predictable daily pattern typical of commuter or 
short-duty vehicles. Two distinct weekday peaks are 
visible: one in the morning between 07:00–09:00 and 
another around 16:00–18:00, with little activity outside 
these windows. The rest of the day is dominated by 
vehicle idling or parking. Weekend driving is minimal 
and occurs primarily in the early afternoon. The low 
amplitude of the distance curve confirms that these 
vehicles accumulate relatively small daily mileage. 
Their predictable operation and long stationary periods 
make them well suited for overnight charging, with no 
operational dependence on public infrastructure.

Cluster 2 shows a markedly different temporal 
structure, with the highest concentration of activity 
during mid-day hours. Weekday driving intensity 
increases around 09:00, peaks between 11:00 and 
15:00, and declines gradually toward evening. Weekend 
driving follows a similar pattern, though at slightly 
higher intensity and extended duration. This cluster 
likely represents service or delivery vehicles with 
numerous short trips concentrated in business hours 
and reduced movement during morning and evening 
commute periods. Their operational predictability and 
daytime concentration make them ideal candidates 
for depot-based overnight charging, supplemented 
by limited opportunity charging if required for longer 
shifts.

Cluster 3 demonstrates an intermediate pattern 
combining elements of commuting and long-route travel. 
Weekday activity shows two subdued peaks – one in the 
morning and one in the afternoon – but unlike Cluster 
1, driving continues through mid-day with moderate 
intensity. The weekend profile is broader, covering most 
daylight hours with steady movement. These vehicles 
likely undertake fewer but longer trips, possibly with 
defined mid-day tasks or longer-distance assignments. 
Their operational rhythm suggests moderate energy 
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requirements but limited opportunities for daytime 
recharging, making scheduled mid-day or destination 
charging particularly relevant.

4.4 The Driving Patterns
Vehicle trip distribution
The trip distribution plot in Figure 5 reveals clear 

differentiation between clusters in both the number and 
length of trips. Vehicles in Cluster 1 exhibit a sharply 
peaked distribution centred on one to two daily trips, 
consistent with regular commuter or short-shift use. 
The low spread confirms that these vehicles operate in 
a stable, highly predictable pattern with limited day-to-
day variation. In contrast, Cluster 2 shows a broader 
distribution with a modal range of three to five trips per 

day, characteristic of multi-stop duty cycles or service 
operations where vehicles make repeated short journeys 
between locations. Cluster 0 displays a right-skewed 
distribution, combining relatively few but often long 
trips, aligning with long-distance or inter-urban usage 
patterns that contribute disproportionately to total 
mileage. Finally, Cluster 3 sits between these extremes, 
reflecting moderate trip counts with mixed trip lengths 
and more variable day-to-day utilisation.

The two graphs depicting vehicle trip distance 
distribution (Figure 6) and average parking duration 
during the night (Figure 7) provide further empirical 
evidence of the heterogeneity identified in the 
descriptive statistics and clustering analysis.

The average distance per car figure reinforces 
this segmentation. Cluster-level averages diverge 

Figure 4. Average 15 minute Distance Profiles by Cluster 

Figure 5. Vechicle Trips per Day
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substantially, with Cluster 0 vehicles showing the 
highest mean daily distance, typically exceeding 
100 km, while Clusters 1 and 2 average less than half 
of that. Cluster 3 occupies an intermediate position 
but demonstrates a wider internal spread, suggesting 
that while most vehicles remain within moderate 
daily ranges, a subset occasionally undertakes longer 
journeys. These differences in both total distance and 
trip fragmentation confirm that the fleet encompasses 

several distinct operational regimes rather than a single 
unified pattern of use.

Weekday usage analysis
Analysing the average driving data by individual cars, 

it is notable, that most of the vehicles follow a distinct 
trip distribution, which we have labelled managerial 
vehicles. 

The Figure 8 presents the average driving distance by 
time of day, separated by day of the week, showing a clear 

Figure 6. Distance Driven per Day

Figure 7. Parking Hours per Night

 
 

Figure 8. Average Distance Driven by Days of the Week
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bimodal pattern typical of daily commuting or service-
related vehicle use. Two distinct peaks are visible: 
the first in the morning between 07:00 and 09:00, 
corresponding to departure trips, and the second in the 
afternoon between 15:30 and 18:30, linked to return or 
end-of-day travel. Between these peaks, driving activity 
remains low, indicating that most vehicles are stationary 
or engaged in longer single trips during mid-day  
hours.

The weekday profiles (Monday–Thursday) are almost 
identical, reflecting regular and predictable operation 
patterns. In contrast, Friday and Saturday show 
elevated afternoon and evening activity, with Saturday 
maintaining high levels until around 21:00, suggesting 
more flexible or leisure-related driving behaviour. 
Night-time use across all days is minimal, confirming 
that the fleet operates mainly within daylight hours.

From an operational perspective, the mid-day 
trough between 10:00 and 14:00 represents a natural 
opportunity window for vehicle charging, while the 
extended evening activity on weekends indicates the 
need for more adaptive charging strategies. Overall, 
the temporal distribution underscores a consistent 
daily rhythm of use, combining high predictability 
during workdays with greater variability toward the 
weekend – an important input for modelling time-
dependent charging demand and energy optimization 
strategies.

5.	 Discussion
From a methodological perspective, the coherence 

of feature rankings within each group supports the 
validity of the clustering solution. In particular, the 
alignment between the scatterplot positioning and the 
signed z-scores of trip-count, duration, distance, and 
temporal-entropy features indicates that the clusters 
are not artifacts of the algorithm but reflect underlying 
behavioural regimes. This strengthens the case for 
using cluster membership as a stratification variable 
in subsequent techno-economic analysis, including 
battery sizing, charger power selection, and charging-
window allocation in smart-charging scenarios.

In the broader analytical context, these results 
strengthen the argument for data-driven fleet 
segmentation. The pronounced variation in trip 
frequency and travel intensity indicates that 
electrification strategies must be tailored to the specific 
operational profile of each cluster. Vehicles with low 
trip counts and consistent daily distances can be 
readily electrified with smaller battery packs and depot-
based overnight charging, whereas those in high-trip  
or high-mileage clusters will require larger-capacity 
vehicles and flexible access to daytime charging 
infrastructure. Thus, the trip distribution patterns 
provide a quantitative link between observed  

behaviour and the differentiated transition pathways 
modelled in later sections of the study.

From an electrification standpoint, Cluster 0 presents 
the greatest requirement for either large usable  
battery capacity or reliable access to high-power public 
DC charging, given the combination of high daily  
energy demand and temporal unpredictability. 
Operational planning for this segment should emphasize 
range-adequate model selection and route-integrated 
charging strategies.

For Cluster 1 electrification suitability is 
correspondingly high. Modest energy requirements and 
strong schedule predictability support overnight depot 
or home charging without the need for opportunistic 
fast charging. This group can typically be transitioned 
with smaller-capacity battery electric models at minimal 
operational risk, delivering early cost and emissions 
benefits.

Cluster 2 is a canonical stop-and-go urban service 
pattern – e.g., delivery rounds, service calls, or intra-city 
distribution – where daily energy demand is moderate 
but distributed across many short drive segments with 
limited mid-day idle windows. Such cycles are well 
aligned with battery-electric operation provided that 
overnight charging is reliable; in dense urban contexts, 
limited dwell at mid-day reduces the practicality of low-
power opportunity charging, so either predictable depot 
returns or occasional DC top-ups may be warranted 
during peak days. Regenerative braking benefits are 
likely to be material in this segment due to frequent 
decelerations.

For Cluster 3 electrification implications are nuanced. 
While daily kilometre totals are not as extreme as in 
Cluster 0, the continuous nature of driving episodes 
and the presence of a single mid-day dwell create 
a natural anchor for scheduled AC or DC top-ups, 
for example at a known destination or customer site.  
Right-sizing battery capacity to cover the dominant 
continuous leg while planning a medium-power 
charge during the mid-day stop typically yields robust 
operational feasibility.

6.	 Conclusion
The findings of this study provide a empirical 

understanding of corporate fleet usage and its implications 
for vehicle electrification. Through clustering analysis, 
four distinct operational archetypes were identified, 
each characterized by unique travel intensity, trip 
fragmentation, and temporal driving patterns.  
These include high-mileage vehicles with irregular 
schedules, low-utilisation commuters with stable 
routines, multi-stop urban-duty vehicles with 
short repetitive trips, and low-frequency users 
combining longer drives with mid-day dwell periods.  
The identification of these patterns confirms that 
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corporate fleets are far from homogeneous and 
that electrification strategies must be differentiated 
according to operational behaviour.

The analysis of average daily driving profiles 
reinforces these distinctions. Weekday usage exhibits 
a pronounced bimodal distribution, with morning 
and afternoon peaks reflecting conventional working 
hours, while weekend activity extends later into the 
evening, indicating greater behavioural flexibility. This 
temporal structure highlights predictable windows of 
vehicle availability – particularly the mid-day trough 
and overnight hours – that are well suited for controlled 
or scheduled charging. Conversely, fleets operating  
with higher temporal variability, particularly on 
weekends or across regional routes, will require more 
flexible or distributed charging infrastructure, including 
access to fast chargers during operational hours.

These empirical insights suggest that fleet 
electrification should not be approached through 
a single financial or technical criterion such as purchase 
cost or nominal range. Instead, transition planning  
must account for the specific duty cycles that  
determine energy demand, charging availability, and 
operational risk. High-mileage, irregular-use vehicles 
will depend on fast-charging networks and robust  
route planning, whereas low-distance, schedule-stable 
fleets can achieve immediate cost and emissions benefits 
with smaller, depot-charged BEVs. Urban, multi-
stop vehicles appear particularly well suited for early 
electrification, benefiting from short trip distances, high 
regenerative braking potential, and overnight depot 
access.

From a methodological standpoint, integrating 
empirical usage data with simulation and scenario-
based modelling offers a powerful means to evaluate 
electrification feasibility under dynamic conditions. 
This approach enables the assessment of total cost of 
ownership and emissions performance under realistic 
operational constraints, supporting evidence-based 
transition planning. 

The next phase of this research will extend these 
analyses by combining the empirical datasets provided 
by carmonitor.eu with economic simulation to quantify 
cost structures for each of the clusters, the corresponding 
infrastructure requirements, and emission outcomes 
across alternative fleet transition pathways.
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