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Abstract. The decarbonisation of corporate vehicle fleets is a central challenge in achieving Europe’s climate
neutrality targets under the European Green Deal. Although corporate vehicles constitute only a share of the
total fleet, they account for a disproportionate fraction of total mileage and associated CO, emissions. Despite
fiscal incentives and regulatory support, the adoption of battery electric vehicles (BEVs) within the corporate
sector remains significantly below private uptake, primarily due to uncertainty about operational feasibility and
charging constraints. This study presents a data-driven framework for assessing fleet electrification potential based
on empirical driving data and simulation-based modelling. Using vehicle usage records from the carmonitor.
eu telematics platform, the research identifies four distinct operational archetypes within corporate fleets,
differentiated by travel intensity, trip fragmentation, and temporal driving structure. These archetypes are derived
through a clustering methodology employing standardised behavioural indicators, principal component analysis
(PCA), and k-means segmentation, validated by silhouette and Davies-Bouldin indices. Results demonstrate
pronounced heterogeneity in fleet operation, with daily driving distances, trip frequency, and vehicle availability
varying substantially across clusters. Scenario-based modelling reveals that electrification feasibility depends not
only on total mileage but also on temporal driving regularity and charging opportunity windows. Vehicles with
predictable daily cycles and long overnight parking are found to be most suitable for early electrification, while
high-mileage or irregular-use vehicles require access to fast-charging infrastructure and larger battery capacities.
The study concludes that segmenting corporate fleets by operational archetype provides a robust analytical
foundation for transition planning, enabling tailored recommendations for vehicle selection, charging
infrastructure, and total cost of ownership optimisation. By linking empirical usage data with simulation and scenario
modelling, the paper contributes a replicable methodological approach for evidence-based fleet decarbonisation
strategies across Europe.
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1. Introduction

Efforts to decarbonise transport have accelerated as
governments and industries seek to align with global
climate targets. In Europe, the European Climate
Law establishes a legal commitment to achieve
climate neutrality by 2050 as part of the European
Green Deal (Regulation (EU) 2021/1119 of the
European Parliament and of the Council of 30 June
2021 Establishing the Framework for Achieving Climate
Neutrality and Amending Regulations (EC)
No0401/2009and (EU) 2018/1999 (‘European Climate
Law’), 2021), identifying road transport as a key sector
requiring rapid emission reductions. While most sectors
have reduced greenhouse gas (GHG) emissions over
recentdecades, transportremainsan outlier—responsible
for about 25% of total EU emissions in 2022 and still
rising (European Environment Agency, 2024).

Corporate vehicles, despite benefiting from fiscal
incentives such as tax exemptions in many EU
Member States (Transport & Environment, n.d.),
have contributed relatively little to emission reduction
efforts. They represent around 60% of all new car
registrations in the EU (Héliot, & Ferrara, 2025) and,
because they are driven roughly twice as much as private
cars, account for 74% of new vehicle CO, emissions
(Cornelis & Antich, 2023). Yet, battery-electric vehicle
(BEV) uptake in this segment remains modest. In 2024,
BEVs made up only 16.3% of new corporate registrations
in Germany versus 25.6% among private users; in
France the figures were 12.0% and 22.1%, respectively;
and in Denmark, 26.1% compared to 53.1% (Antich,
Arnau Oliver, 2024). The European Commission
notes that electrifying these high-mileage fleets could
achieve substantial emission reductions within a short
timeframe (Decarbonise Corporate Fleets, 2025).

Corporate fleets are increasingly recognised as
pivotal to accelerating the EV transition. Their shorter
replacement cycles supply the second-hand market
with affordable used EVs, thus expanding access for
private consumers. Estimates suggest that full corporate
fleet electrification could add nearly seven million
used EVs to Europe’s market by 2035 (Cornelis &
Antich, 2025).

Previous research on private vehicle electrification
has explored financial factors such as vehicle cost
(Coffman et al, 2017), charging infrastructure
availability (Haustein et al, 2021), and incentives —
including in Latvia (Rubenis et al., 2019) — as well as non-
financial influences such as social norms, environmental
awareness, and aesthetics (Krishnan & Koshy, 2021),
without going into details of various subsections
of the fleets and suitability of EVs for all of those.

This article aims to facilitate the transition of corporate
fleets from internal combustion engine (ICE) vehicles
to EVs, particularly looking at how to evaluate the
suitability ofan EV as a direct replacement for an existing

ICE vehicle. This concept builds on the framework
introduced in "The Road to Zero-Emission Fleets:
The Role of Data-Driven Decision-Making," (Rubenis
et al,, 2025) which outlined the methodological basis
for integrating empirical fleet monitoring, simulation
modelling, and decision-support analytics into
corporate fleet transition planning.

Even though for corporate fleets adoption is primarily
determined by economic feasibility, typically assessed
through Total Cost of Ownership (TCO) models
(Al-Alawi & Bradley, 2013) and further influenced by
fiscal measures and incentives (Di Foggia, 2021), first
of all, understanding how these corporate vehicles are
used, is essential for designing effective electrification
strategies.

Real-world  fleet operations are inherently
heterogeneous, reflecting a wide range of trip patterns,
travel intensities, and temporal behaviours that
cannot be adequately captured by aggregated averages
or single performance indicators. To address this
complexity, we have employed clustering techniques
to identify groups of vehicles with similar operational
characteristics, or archetypes, based on empirical
driving data. This data-driven segmentation enables the
differentiation of fleet users according to their mobility
behaviour - such as daily distance, trip frequency,
and schedule regularity — and provides a structured
foundation for evaluating electrification suitability.
By modelling these operational archetypes, it becomes
possible to align vehicle selection, charging strategies,
and economic assessments with the actual patterns
of use observed in the field, rather than relying on
generalized assumptions or static usage profiles.

2. Methods
2.1. Driving Simulation

Dataset

The study relies on operational logs exported from
the client’s existing telematics platform carmonitor.
eu. This European vehicle data repository provides
comprehensive information on fleet composition and
vehicle utilisation patterns. Data are provided as per-
vehicle, semicolon-delimited CSV files and contain
a time-ordered sequence of contiguous usage "events",
where an event is defined as a period during which the
vehicle remains in a single operational state. Two states
are used in the raw export: driving for intervals when
the vehicle is in motion and parked for intervals when
the vehicle is stationary.

Each record contains six fields: Car_ID, Start, End,
Event, Distance KM, and Average Speed. Start and
End are timestamp strings indicating the beginning and
end of the event interval as recorded by the platform.
The timestamps are supplied without explicit timezone
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metadata by the export; for analysis, we treat them as
local clock time as provided by the fleet operator and
keep them consistent across all vehicles. The Event
is a categorical label taking values, driving or parked.
Distance KM records the total distance attributed by
the platform to the event interval in kilometres; by
convention, this field is populated for driving intervals
and left blank in the parked state. Average Speed is the
event-level average in kilometres per hour, likewise
typically populated for driving intervals and absent for
parked intervals.

The fundamental unit in the raw data is an interval,
not an instantaneous point sample. That is, each
row describes a span [Start, End) during which the
operational state is assumed constant, and for which
aggregate metrics (distance and average speed, when
applicable) are reported. Intervals may vary in length
from minutes to hours, and consecutive intervals are
expected to tile the observation timeline for each vehicle
with minimal gaps or overlaps; however, as with many
operational datasets, occasional gaps (no state reported)
or overlaps (partly redundant intervals) can occur
due to connectivity, device resets, or post-processing.
The export uses a consistent decimal and unit
convention (kilometres, kilometres per hour).

As received, parked intervals contain no distance or
speed information by design, and a small proportion
of driving intervals may also have missing values in one
of those fields; these are handled during preprocessing
and imputation, which are described in the next
subsection.

2.2. Clustering Methodology:
General Approach

The objective of the clustering analysis is to
identify groups of vehicles with comparable patterns of
daily use. Vehicles that are used in a similar way - for
example, driven mainly in the morning and evening
with long overnight parking, or used continuously
throughout the working day — can be expected to have
similar charging opportunities and energy profiles.
Clustering therefore provides an analytical foundation
for the subsequent simulation and economic modelling
of the fleet.

Clustering in this study is used to identify groups
of vehicles with similar patterns of daily use, forming
behavioural archetypes that serve as a foundation
for fleet electrification analysis. The process begins
by converting detailed driving and parking records
into daily indicators such as distance, trip frequency,
and time-of-day activity. Each vehicle’s long-term
behaviour is then summarised through aggregated
statistics, standardised to ensure comparability. Using
these behavioural profiles, vehicles are grouped with
the k-means algorithm, and the optimal number of
clusters is selected based on internal validity measures.
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The resulting clusters represent distinct usage types —
such as commuter, service, or low-utilisation vehicles —
providing a structured basis for subsequent modelling
of energy demand and transition scenarios.

2.3. Feature Construction and Aggregation

Data representation

The transformation of raw vehicle event logs into
consistent numerical features is a critical step before
clustering. The aim is to represent each vehicle’s
daily behaviour in a way that is both comparable
across vehicles and robust to differences in trip
frequency or observation period length. This process
consists of two levels: (a) constructing day-level
indicators from individual driving and parking events,
and (b) aggregating these daily measures into long-term
vehicle-level descriptors.

Let V=1,...,n denote the set of vehicles in the
dataset, and let D, =1,...,7, represent the set of

observation days for vehicle 7 .
Construction of day-level features

The event log for each vehicle i contains consecutive

records where  s;and e,

(Sijae,'jaéijadijav,j i

denote the start and end timestamps of interval j,

€, edriving,parkedis the event type, d; is the

ij
distance travelled (km) if the event is “driving”, and v, is
the average speed (km-h™).

The first step transforms this sequence into a set of
daily statistics representing how each vehicle is used

during each day 7.

For every vehicle iand day t€D,, we compute
avector of p features

X, =[total distance,,driving time,,

it>

parking_time, ,avg speed,,

it?
morning_share, ,evening_share, ,night_parking,,]" (1)

These quantities are derived as follows:
— Total daily distance is the sum of all driving intervals’
distances d; within the day.
— Number of trips counts transitions from parked to
driving states.
- Driving and parking times are computed as the
total durations of corresponding event types within the
24-hour window.
— Average speed is the distance-weighted mean of v
over all driving intervals.
- Morning and evening shares represent the
proportion of total daily distance occurring between
6-10 am. and 4-8 p.m. respectively, capturing
commuting intensity.



BaLTIiC JOURNAL OF ECONOMIC STUDIES

Vol. 11 No. S, 2025

- Night parking hours measure the total duration of
parking between 10 p.m. and 6 a.m., which approximates
overnight availability for charging.

Collectively, these indicators summarise when, how
far, and how intensively each vehicle is used during
a typical day. They form the basis for comparing
operational roles between vehicles.

Aggregation to vehicle-level profiles

Because each vehicle is observed over many days, the

daily indicators {x,},, are summarised into a vehicle-
level fingerprint using robust statistical operators that
are resistant to outliers and missing data.

Formally, the aggregation operator ® (-) maps the set

of daily observations for vehicle iinto a fixed-length
feature vector:

z; =) ({xir};eu):
[ median(x,), IOR(x,), p95(x,). T (2)

For each daily indicator we compute three summary
measures: the median (typical value), the interquartile
range (variability), and the 95th percentile (upper limit of
observed intensity). These statistics capture not only the
average behaviour but also the stability and extremes of
usage. For example, a vehicle with alow median distance
but a high 95th percentile likely performs occasional
long trips despite mostly short travel.

The aggregation yields the matrix

Z=[z,z, ,..,z, ] €R™, (3)

where 7 is the number of vehicles and ¢ the number
of aggregated features per vehicle. This matrix is the
direct input for clustering.

Normalisation and scaling

Since the features z; are expressed in different units
(kilometres, hours, shares), we standardise them before
comparing vehicles.

For each feature j, let o¢; and s, denote robust
measures of central tendency and dispersion (typically
the median and median absolute deviation), and
standardise the data as

To limit the influence of extreme values, we apply

a winsorisation operator ¥, ) that caps the highest
and lowest quantiles (e.g. at 2.5 % and 97.5 %).

The resulting matrix Z= VK(Z ) provides a robust,

scale-free basis for distance calculations.

If several features are highly correlated, we apply
a principal component analysis (PCA) transformation.
PCA projects the data onto a lower-dimensional

orthogonal space y = Z{J, where U € R?" contains
the first » principal component loadings capturing

a target proportion (typically 90 %) of total variance.
The clustering is then performed in this reduced feature
space.

(d) Outputs of the preprocessing pipeline

The result of this multi-stage preprocessing is a dataset

of vehicle-level behaviour profiles Y =[Y,...,Y,]", each
representing a single vehicle by its typical usage statistics

3. Clustering Algorithm

Clustering aims to partition the vehicles into K
groups such that vehicles within the same cluster have
similar use patterns and those in different clusters are
dissimilar.

The most straightforward and widely used approach
is the k-means algorithm, which minimises the total
within-cluster variance:

K
min JK=ZZIIK—mk||2, (4)

{my }le ACk }llle k=lieC,

where m, is the centroid (mean profile) of cluster & ,

and C, is the set of vehicles assigned to it.

In practice, the optimisation is performed iteratively:
vehicles are first assigned to the nearest centroid,
centroids are recalculated as the average of the assigned
members, and the process repeats until assignments
stabilise.

Because k-means can converge to local minima, it is
initialised multiple times with random seeds, and the
configuration with the smallest objective J is retained.

As a robustness check, a Gaussian Mixture Model
(GMM) can also be fitted, which allows for probabilistic
rather than hard assignments. In that case, the likelihood

Zlog(an (Y £,) (%)

is maximised using the Expectation-Maximisation
(EM) algorithm, yielding posterior probabilities 7y,
that vehicle 7 belongs to cluster k.

Determining the number of clusters

The optimal number of clusters K is selected by
evaluating a range of candidate values using several
complementary indices.

For k-means, we compute the silhouette coeflicient

S (K ), which measures how similar each observation
is to its own cluster compared with other clusters, and

the Davies-Bouldin index DB(K), which penalises
overlapping clusters.

The selected number of clusters K~ is the smallest
value that provides both high silhouette scores and

low DB, corresponding to a distinct yet parsimonious
segmentation.
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For GMMs, we additionally use information criteria
such as the Bayesian Information Criterion (BIC) and
the Akaike Information Criterion (AIC).

To test the stability of the clustering solution,
we apply a resampling approach by repeating the
clustering on bootstrapped subsets of the data and
measuring the Adjusted Rand Index between solutions.
The final K balances internal fit, interpretability, and
stability.

Cluster assignment and interpretation

Once the cluster structure is defined, each vehicle is
assigned to the nearest centroid:

¢, =argmin||Y, —m, |,i=1,...,n, (6)
and, when applicable, its confidence is measured
by the relative distance margin or by the posterior

probability max,y, from the GMM.
Cluster characteristics are then examined in the

original feature space. For each cluster &k, we compute
the median and variability of key indicators (e.g. daily
distance, number of trips, parking hours). These
statistics form the cluster profile

= median{z,:ieC,}, (7)

which serves as a basis for interpretation. Descriptive
tags such as “commuter-type vehicle”, “urban operative
vehicle”, or “low-utilisation pool car” are assigned using
heuristic rules based on these median values and known

operational patterns.
Vehicles whose profiles lie far from any cluster
centroid - identified by Euclidean distances -

are flagged as potential outliers rather than forced into
a cluster.

Table 1
Descriptive fleet statistics

Vol. 11 No. 5, 2025
4. Fleet Descriptive Statistics

4.1 Overview
of Fleet-Level Descriptive Statistics

The descriptive statistics summarise the fundamental
operational characteristics of the analysed corporate
vehicle fleet and establish the empirical context for
subsequent segmentation.

Overall, the fleet demonstrates moderate daily
utilisation with substantial variation among vehicles.
The median of vehicle-level daily distances was 48.0 km
(SD = 10.6), with the central 50% of vehicles ranging
between 41 and 54.5 km. Nevertheless, higher-intensity
users were clearly present: the 95th percentile of
daily distance reached 158.3 km (SD = 56.2), and
extreme cases exceeded 290 km. These values indicate
that while most vehicles follow moderate, stable use
patterns, a smaller subset engages in significantly more
demanding operational cycles, likely reflecting field
service or inter-urban travel.

The frequency of daily trips was consistent with
light-duty commercial or commuter-type operation.
The median number of trips per day was 2.0 (M = 2.44,
SD = 0.69), confirming that most vehicles perform
one outbound and one return trip per day.
The mean number of trips per day was 3.35
(SD = 0.52), showing that some vehicles undertake
additional intermediate journeys. The upper quartile
reached approximately 3.6 trips per day, with occasional
peaks above four, which may correspond to multi-stop
service routes.

The duration and intensity of daily operation
were limited relative to the total time vehicles
spent inactive. Median driving time was 1.57 hours

Indicator Mean SD Median | IQR (P25-P75) | Range (min-max)

Median daily distance (km) 48.01 10.56 48 41.0-54.5 26.5-73.0
95th percentile daily distance (km) 158.33 56.18 139.3 115.3-198.3 73.3-297.2
Median trips per day 2 0.69 2 2.0-3.0 2.0-4.0
Mean trips per day 3.35 0.52 3.37 2.97-3.65 2.41-4.90
Median driving time (h) 1.57 0.3 1.57 1.34-1.75 0.84-2.39
Median parked time (h) 22.43 0.3 2243 22.25-22.66 21.61-23.16
Drive—park ratio 0.06 0.01 0.07 0.06-0.07 0.03-0.10
Night parking duration (h) 16.26 1.19 1591 15.40-16.74 14.36-20.18
Midday parking duration (h) 3.92 0.69 4.1 3.82-4.37 2.02-4.85
Median trip distance (km) 15.8 3.68 16.23 13.56-18.40 7.0-23.5
95th percentile trip distance (km) 23 5.29 23.5 19.82-26.66 10.25-33.22
Median trip duration (h) 0.54 0.13 0.56 0.51-0.64 0.24-0.76
95th percentile trip duration (h) 0.73 0.16 0.77 0.66-0.83 0.34-0.96
Coefficient of variation (daily km) 0.8 0.13 0.8 0.70-0.89 0.51-1.13
Start-time entropy (bits) 3.76 0.08 3.77 3.71-3.81 3.59-3.98
Share of weekend distance (%) 24.9 4.86 24.2 21.7-27.9 13.9-38.5
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(SD = 0.30), while median parked time reached
22.43 hours (SD = 0.30), producing a mean drive—
park ratio of 0.06 (SD = 0.01). This strong imbalance
between motion and idleness demonstrates that the
vehicles are available for charging during a large portion
of each day, especially overnight. Indeed, vehicles
were parked for an average of 16.26 hours per night
(SD = 1.19), supplemented by roughly 3.9 hours of
midday parking (SD = 0.69).

Trip-level indicators further characterise the short-
distance nature of daily operations. The median trip
length averaged 15.8 km (SD = 3.7), while the 95th
percentile of trip distance was 23.0 km (SD = 5.3).
Trip durations were correspondingly brief, with
median trip times of 0.54 hours (=32 minutes) and
a 95th percentile of 0.73 hours (=44 minutes). These
results suggest that most travel occurs within a local
or regional radius well within the typical range of
contemporary battery-electric vehicles.

Temporal regularity measures highlight moderate
variability in usage. The coefficient of variation in
daily distance averaged 0.80 (SD = 0.13), indicating
that many vehicles alternate between light and heavy
usage days. The mean start-time entropy of 3.76 bits
(SD = 0.08) suggests that departure times are partly
predictable —typical of routine operations —yet still allow
flexibility across weekdays. Weekend use was limited,
comprising roughly 25% of total distance (SD = 0.05),
confirming that the fleet’s activity is predominantly
weekday-based.

Taken together, these descriptive statistics reveal
a heterogeneous operational structure encompassing
both predictable, low-intensity users and irregular,
high-mileage vehicles. The coexistence of such distinct

behavioural profiles indicates that the fleet cannot be
adequately represented by a single operational model.
This heterogeneity provides the empirical foundation
for the clustering analysis that follows, which classifies
vehicles into operational archetypes to inform
electrification suitability assessments and charging
strategy development.

4.2 Determination
of the Optimal Number of Clusters

To identify the most appropriate number of
behavioural clusters, a sensitivity analysis was conducted

for K=2to K =10using two complementary
diagnostics: the within-cluster sum of squares (inertia)
and the mean silhouette coefficient. The results are
summarised in Figure 2.

The inertia values decreased monotonically from

1862 at K =2 to 643 at K =10, reflecting the
expected reduction in within-cluster variance as more
clusters are added. The elbow method therefore focuses
on the point where the rate of improvement begins to
flatten, indicating diminishing returns from additional
partitions. In this dataset, a pronounced inflection was

visible between K =2and K =4, after which the
curve gradually levelled off, suggesting that four clusters
capture most of the structure present in the data.

The silhouette coefficients exhibited a similar pattern.
The highest mean silhouette value (0.48) was obtained
for the two-cluster solution, indicating strong separation
at the coarsest partition. However, this configuration
merged clearly distinct behavioural groups and was
therefore judged overly simplistic. The silhouette value

declined to 0.37 for K =3 and to 0.24 for K =4, with
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Figure 1. Fleet-wide Average Distance Driven in 15-Minute Intervals
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Figure 2. Cluster selection diagnostics

only marginal changes thereafter ((0.20< § ( K ) <0.24
for K =5 -10). This flattening indicates that increasing
the number of clusters beyond four yields no substantive
improvement in internal cohesion.

Taken together, the elbow shape of the inertia curve
and the stabilisation of the silhouette score beyond

K =4 both indicate that a four-cluster solution offers
the best compromise between explanatory power
and parsimony. This configuration provides sufficient
granularity to distinguish major operational patterns
while maintaining clear interpretability. Consequently,

K =4 was selected as the optimal number of clusters
for subsequent analysis and interpretation.

4.3 The Fleet

The clustering solution separates vehicles primarily
along two orthogonal dimensions of use: the intensity

T T T

2 3 4 5 6 7 8 9 10
Number of clusters (k)

of daily distance accumulation and the fragmentation of
that distance into trips. 4 clusters were observed.

Cluster description

Cluster 0: high-mileage, high-variability users

Vehicles assigned to Cluster 0 exhibit the highest
intensity of daily distance, reflected by strong
positive loadings for the 9Sth percentile of daily
kilometres, the standard deviation of daily kilometres,
and the mean and median daily kilometres.
In the trips-per-day versus distance plane these vehicles
occupy the high-distance region, with trip counts
that can vary but are less diagnostic than the sheer
volume of kilometres. This archetype is consistent
with long-range service, field operations, or inter-
urban logistics in which routing is dynamic and peaks
of very long travel days occur with meaningful
frequency.

Cluster  1:  low-utilization,  schedule-regular

commuters

Cluster analysis
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Cluster 1 sits at the opposite end of the utilization
spectrum. The salient features all load negatively:
coeflicient of variation and standard deviation of daily
kilometres, and the number of trips per day are all
below fleet averages. Start-time entropy is also lower,
indicating a more regimented schedule with departures
concentrated in narrow time windows. The share of
weekend kilometres is depressed, which reinforces
the interpretation of routine weekday use. In the two-
dimensional plot, these vehicles populate the low-
distance, low-trips region.

Cluster 2: multi-stop urban duty with short trip
lengths

Cluster 2 is distinguished by simultaneous signals
of high fragmentation and short trip characteristics.
Median trips per day load strongly positive, while
median and 95th percentile trip distances and durations
load strongly negative. Mean mid-day parking time
and the 95th percentile of mid-day maximum parking
duration are both notably below average, indicating
that vehicles remain active rather than stationary
during business hours. In contrast, night-time parking
accumulates above-average hours, consistent with
depot dwell or home garaging. Plotted against trips per
day and distance, these vehicles gravitate to the high-
trips, low-distance corner.

Cluster 3: low-frequency, long-duration trips with

mid-day dwell
Vehicles in Cluster 3 display above-average trip

durations at both the median and the upper tail,
accompanied by higher median driving hours and
a modestly elevated mid-day parking total. The median
number of trips per day is below average, and median
parked hours are somewhat reduced, suggesting
days organized around one or a few longer journeys
interspersed with a notable mid-day stop. In the
visualization these vehicles appear at lower trip counts
with moderate distances that are achieved through
longer, less fragmented drives.

Comparative Interpretation

Comparing all four clusters, two dimensions emerge
as dominant in defining fleet heterogeneity: daily
driving intensity and temporal dispersion. Cluster
0 occupies the high-intensity, long-duration extreme;
Cluster 1 represents low-intensity, time-bound
commuting; Cluster 2 captures high fragmentation
within a concentrated workday; and Cluster 3 combines
moderate distance with extended driving windows.
Weekday and weekend contrasts are most pronounced
in Clusters 0 and 2, where weekend activity exceeds
weekday levels, while Cluster 1 remains strongly
weekday-oriented.

The average 15-minute distance profiles reveal distinct
operational signatures for each cluster, reflecting the
diversity of use patterns within the analysed corporate
fleet. The graphs display the mean distance travelled
across 1S5-minute intervals throughout the day,

separately for weekdays (blue) and weekends (red),
with shaded areas indicating the 10th-90th percentile
spread. These results highlight significant variation in
both daily intensity and temporal structure of vehicle
use across the four clusters.

Cluster 0 is characterised by the most intensive
and prolonged daily activity profile. Weekday driving
begins gradually around 06:30, peaks between 07:30
and 09:00, and remains consistently high throughout
business hours, with sustained movement continuing
well into the evening. Weekend activity is even
broader, spanning nearly the entire daytime period and
reaching higher intensity levels than on weekdays.
The extended operational window and weak midday
trough suggest irregular routing or service-oriented
use with minimal downtime. This pattern corresponds
to long-distance, high-mileage vehicles that require
substantial daily energy input and access to fast-
charging options.

In contrast, Cluster 1 displays a highly structured
and predictable daily pattern typical of commuter or
short-duty vehicles. Two distinct weekday peaks are
visible: one in the morning between 07:00-09:00 and
another around 16:00-18:00, with little activity outside
these windows. The rest of the day is dominated by
vehicle idling or parking. Weekend driving is minimal
and occurs primarily in the early afternoon. The low
amplitude of the distance curve confirms that these
vehicles accumulate relatively small daily mileage.
Their predictable operation and long stationary periods
make them well suited for overnight charging, with no
operational dependence on public infrastructure.

Cluster 2 shows a markedly different temporal
structure, with the highest concentration of activity
during mid-day hours. Weekday driving intensity
increases around 09:00, peaks between 11:00 and
15:00, and declines gradually toward evening. Weekend
driving follows a similar pattern, though at slightly
higher intensity and extended duration. This cluster
likely represents service or delivery vehicles with
numerous short trips concentrated in business hours
and reduced movement during morning and evening
commute periods. Their operational predictability and
daytime concentration make them ideal candidates
for depot-based overnight charging, supplemented
by limited opportunity charging if required for longer
shifts.

Cluster 3 demonstrates an intermediate pattern
combining elements of commutingandlong-route travel.
Weekday activity shows two subdued peaks — one in the
morning and one in the afternoon - but unlike Cluster
1, driving continues through mid-day with moderate
intensity. The weekend profile is broader, covering most
daylight hours with steady movement. These vehicles
likely undertake fewer but longer trips, possibly with
defined mid-day tasks or longer-distance assignments.
Their operational rhythm suggests moderate energy
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Average 15-minute Distance Profiles by Cluster (Weekdays vs Weekends, with 10-90% spread)
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Figure 5. Vechicle Trips per Day

requirements but limited opportunities for daytime
recharging, making scheduled mid-day or destination
charging particularly relevant.

4.4 The Driving Patterns

Vehicle trip distribution

The trip distribution plot in Figure S reveals clear
differentiation between clusters in both the number and
length of trips. Vehicles in Cluster 1 exhibit a sharply
peaked distribution centred on one to two daily trips,
consistent with regular commuter or short-shift use.
The low spread confirms that these vehicles operate in
a stable, highly predictable pattern with limited day-to-
day variation. In contrast, Cluster 2 shows a broader
distribution with a modal range of three to five trips per
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day, characteristic of multi-stop duty cycles or service
operations where vehicles make repeated short journeys
between locations. Cluster 0 displays a right-skewed
distribution, combining relatively few but often long
trips, aligning with long-distance or inter-urban usage
patterns that contribute disproportionately to total
mileage. Finally, Cluster 3 sits between these extremes,
reflecting moderate trip counts with mixed trip lengths
and more variable day-to-day utilisation.

The two graphs depicting vehicle trip distance
distribution (Figure 6) and average parking duration
during the night (Figure 7) provide further empirical
evidence of the heterogeneity identified in the
descriptive statistics and clustering analysis.

The average distance per car figure reinforces
this segmentation. Cluster-level averages diverge
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substantially, with Cluster 0 vehicles showing the
highest mean daily distance, typically exceeding
100 km, while Clusters 1 and 2 average less than half
of that. Cluster 3 occupies an intermediate position
but demonstrates a wider internal spread, suggesting
that while most vehicles remain within moderate
daily ranges, a subset occasionally undertakes longer
journeys. These differences in both total distance and
trip fragmentation confirm that the fleet encompasses

several distinct operational regimes rather than a single
unified pattern of use.

Weekday usage analysis

Analysing the average driving data by individual cars,
it is notable, that most of the vehicles follow a distinct
trip distribution, which we have labelled managerial
vehicles.

The Figure 8 presents the average driving distance by
time of day, separated by day of the week, showinga clear

Average driven distance by time of day, split by weekday
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bimodal pattern typical of daily commuting or service-
related vehicle use. Two distinct peaks are visible:
the first in the morning between 07:00 and 09:00,
corresponding to departure trips, and the second in the
afternoon between 15:30 and 18:30, linked to return or
end-of-day travel. Between these peaks, driving activity
remains low, indicating that most vehicles are stationary
or engaged in longer single trips during mid-day
hours.

The weekday profiles (Monday-Thursday) are almost
identical, reflecting regular and predictable operation
patterns. In contrast, Friday and Saturday show
elevated afternoon and evening activity, with Saturday
maintaining high levels until around 21:00, suggesting
more flexible or leisure-related driving behaviour.
Night-time use across all days is minimal, confirming
that the fleet operates mainly within daylight hours.

From an operational perspective, the mid-day
trough between 10:00 and 14:00 represents a natural
opportunity window for vehicle charging, while the
extended evening activity on weekends indicates the
need for more adaptive charging strategies. Overall,
the temporal distribution underscores a consistent
daily rhythm of use, combining high predictability
during workdays with greater variability toward the
weekend - an important input for modelling time-
dependent charging demand and energy optimization
strategies.

S. Discussion

From a methodological perspective, the coherence
of feature rankings within each group supports the
validity of the clustering solution. In particular, the
alignment between the scatterplot positioning and the
signed z-scores of trip-count, duration, distance, and
temporal-entropy features indicates that the clusters
are not artifacts of the algorithm but reflect underlying
behavioural regimes. This strengthens the case for
using cluster membership as a stratification variable
in subsequent techno-economic analysis, including
battery sizing, charger power selection, and charging-
window allocation in smart-charging scenarios.

In the broader analytical context, these results
strengthen the argument for data-driven fleet
segmentation. The pronounced variation in trip
frequency and travel intensity indicates that
electrification strategies must be tailored to the specific
operational profile of each cluster. Vehicles with low
trip counts and consistent daily distances can be
readily electrified with smaller battery packs and depot-
based overnight charging, whereas those in high-trip
or high-mileage clusters will require larger-capacity
vehicles and flexible access to daytime charging
infrastructure. Thus, the trip distribution patterns
provide a quantitative link between observed

136

Vol. 11 No. S, 2025

behaviour and the differentiated transition pathways
modelled in later sections of the study.

From an electrification standpoint, Cluster 0 presents
the greatest requirement for either large usable
battery capacity or reliable access to high-power public
DC charging, given the combination of high daily
energy demand and temporal unpredictability.
Operational planning for this segment should emphasize
range-adequate model selection and route-integrated
charging strategies.

For Cluster 1 electrification suitability is
correspondingly high. Modest energy requirements and
strong schedule predictability support overnight depot
or home charging without the need for opportunistic
fast charging. This group can typically be transitioned
with smaller-capacity battery electric models at minimal
operational risk, delivering early cost and emissions
benefits.

Cluster 2 is a canonical stop-and-go urban service
pattern — e.g,, delivery rounds, service calls, or intra-city
distribution — where daily energy demand is moderate
but distributed across many short drive segments with
limited mid-day idle windows. Such cycles are well
aligned with battery-electric operation provided that
overnight charging is reliable; in dense urban contexts,
limited dwell at mid-day reduces the practicality of low-
power opportunity charging, so either predictable depot
returns or occasional DC top-ups may be warranted
during peak days. Regenerative braking benefits are
likely to be material in this segment due to frequent
decelerations.

For Cluster 3 electrification implications are nuanced.
While daily kilometre totals are not as extreme as in
Cluster 0, the continuous nature of driving episodes
and the presence of a single mid-day dwell create
a natural anchor for scheduled AC or DC top-ups,
for example at a known destination or customer site.
Right-sizing battery capacity to cover the dominant
continuous leg while planning a medium-power
charge during the mid-day stop typically yields robust
operational feasibility.

6. Conclusion

The findings of this study provide a empirical
understandingofcorporatefleetusageanditsimplications
for vehicle electrification. Through clustering analysis,
four distinct operational archetypes were identified,
each characterized by unique travel intensity, trip
fragmentation, and temporal driving patterns.
These include high-mileage vehicles with irregular

schedules, low-utilisation commuters with stable
routines, multi-stop urban-duty vehicles with
short repetitive trips, and low-frequency users

combining longer drives with mid-day dwell periods.
The identification of these patterns confirms that
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corporate fleets are far from homogeneous and
that electrification strategies must be differentiated
according to operational behaviour.

The analysis of average daily driving profiles
reinforces these distinctions. Weekday usage exhibits
a pronounced bimodal distribution, with morning
and afternoon peaks reflecting conventional working
hours, while weekend activity extends later into the
evening, indicating greater behavioural flexibility. This
temporal structure highlights predictable windows of
vehicle availability — particularly the mid-day trough
and overnight hours — that are well suited for controlled
or scheduled charging. Conversely, fleets operating
with higher temporal variability, particularly on
weekends or across regional routes, will require more
flexible or distributed charging infrastructure, including
access to fast chargers during operational hours.

These empirical insights suggest that fleet
electrification should not be approached through
a single financial or technical criterion such as purchase
cost or nominal range. Instead, transition planning
must account for the specific duty cycles that
determine energy demand, charging availability, and
operational risk. High-mileage, irregular-use vehicles
will depend on fast-charging networks and robust
route planning, whereas low-distance, schedule-stable
fleets can achieve immediate cost and emissions benefits
with smaller, depot-charged BEVs. Urban, multi-
stop vehicles appear particularly well suited for early
electrification, benefiting from short trip distances, high
regenerative braking potential, and overnight depot
access.

From a methodological standpoint, integrating
empirical usage data with simulation and scenario-
based modelling offers a powerful means to evaluate
electrification feasibility under dynamic conditions.
This approach enables the assessment of total cost of
ownership and emissions performance under realistic
operational constraints, supporting evidence-based
transition planning,

The next phase of this research will extend these
analyses by combining the empirical datasets provided
by carmonitor.eu with economic simulation to quantify
cost structures for each of the clusters, the corresponding
infrastructure requirements, and emission outcomes
across alternative fleet transition pathways.
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