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Abstract. The aim of this work was to develop a mathematical model 
and computer modelling of interphase interaction, mechanical stresses 
and adhesion mechanisms between mechanically inhomogeneous media 
(different phases). Methodology. For the system “metal – dielectric” we use 
a macroscopic approach, which corresponds to the ratio of non-equilibrium 
thermodynamics and physics of solid surfaces. Let’s consider the system 
of equations and boundary conditions for describing the change of energy 
parameters (σh, γ), which characterize the thermodynamic state of the system 
of contacting bodies. Method for calculating the main energy parameters 
(interfacial energy – γm, interfacial tension – σm, work of adhesion – Aad 
and energy of adhesive bonds – γad) in complex solid-state structures 
containing boundary phases is proposed. Based on the basic equations 
of nonequilibrium thermodynamics and surface physics a mathematical 
model of the interphase boundary is designed. A comparative analysis of 
the features of interphase interaction in the systems “metal-metal”, “metal-
semiconductor” and “metal-dielectric” on the example of interacting 
systems “Cu – Zn”, “Cu – Si” and “Cu – quartz”. It is established that the 
most sensitive parameter in the analysis of interphase interactions is the 
interphase energy γm.

A model of mechanical stress formation in the “condensate-substrate” 
system is proposed. In particular, internal stresses in metal condensates are 
caused by changes in the value of interphase energy parameters (primarily 
interfacial tension) in the substrate-nanocondensate system and due to 
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phase-forming processes accompanied by changes in surface energy in 
the condensate volume during its formation. The resulting internal stresses 
in metal condensates are an integral result of the action of statistically 
distributed on the plane of the film local stresses. Such phenomena are due 
to the anisotropy of the energy parameters of the interphase interaction in 
the condensate plane. 

Behavior analysis of energy and adhesion parameters can be used to 
predict the results of interphase interaction in order to select contact pairs to 
create thermodynamically stable structures with predicted values of energy 
parameters of interphase interaction, a certain type of chemical bond and a 
given level of mechanical stresses. 

1. Introduction
Modern functional materials are, as a rule, complex heterophasic 

systems with formed internal boundaries of the contact phase. In such 
systems, due to the physico-chemical, thermodynamic and mechanical 
incompatibility of the boundary phases, a complex interphase interaction 
occurs. Understanding the physical nature of such interaction opens the 
prospect of effective targeted change in the properties of materials and the 
creation of unique nanostructures. 

These structures are also characterized by the evolution of phase formations 
in the process of formation, which is accompanied by a change in the surface 
energy of the system and, as a consequence, a change in its basic structurally 
sensitive parameters. Typical solid-state structures “semiconductor-metal”, 
“dielectric-metal”, “semiconductor (1) – semiconductor (2)” and graphene-
based, as well as more complex compositions are used today as basic 
elements of modern micro- and nanoelectronics. They are characterized by 
the presence of interfacial boundaries, which are characterized by mechanical 
stresses, localized charges, linear defects, impurities and other imperfections. 
All this generally has a negative impact on the performance of such structures 
and their stability.

The greatest results in the study of interphase phenomena have been 
achieved for the systems “liquid (melt) – solid” and “liquid (melt) – vapor” 
[1–9]. However, the problem of interphase interaction in the system “solid 
body (1) – solid body (2)” (between mechanically inhomogeneous regions 
(E1, E2)) has not been studied today. The situation is complicated by the fact 
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that modern experimental methods do not allow direct measurements to 
determine the interphase energy parameters, in particular the energy of the 
interphase interaction.

Thus, the ability to control surface processes at the interface is an 
important factor in solving the problem of obtaining materials with 
predictable physicochemical properties. Understanding the nature of 
mechanical stresses is also relevant, as their basic concepts were formulated 
in the in the middle of the last century mainly from a macroscopic standpoint. 
However, today they are no longer able to explain the peculiarities of their 
origin and evolution at the interphase boundaries of micro- and nanoobjects. 
Adhesion processes at the boundary of two media in modern literature are 
presented only descriptively and are fragmentary. However, the monograph 
[10] forms the general principles of such interaction for a number of 
structural materials according to which the main quantitative parameters 
are the energy of interfacial interaction γm and interfacial tension σm.

Thus, the outlined problem requires a comprehensive approach in the 
study of the interaction of two phases using the analysis of physicochemical, 
thermodynamic and mechanical compatibility of interacting phases. 

2. Interfacial energy at the interface of solid media
Despite the significant amount of work devoted to the study of surface 

and interfacial properties of solids and melts, the theory and practice of 
these phenomena are still far from complete. It should be noted that the 
greatest progress in the study of interphase phenomena has been achieved 
today for the system of melt (liquid) – solid phase. Indicative in this aspect 
are the classical Jung equation, which is used to describe the interphase 
interaction in the system “ liquid medium – solid phase” for about 200 years 
and a significant number of works, including monographs [1; 7; 9] on this 
issue. In particular, Jung showed for the first time that the surface energies 
of the separation of solid and gas phases σsp, liquid and gas phases σcp are 
related by equation [1]:

2 σsp = σcp (1+cos Фz)                                   (1)
where Фz is the limiting angle of wetting of single-phase cast material. 

Therefore, by depositing a drop of liquid with known surface energy on the 
surface of a solid, it is possible to calculate the surface energy of the solid 
phase by the value of the critical wetting angle.
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However, solving the problem of interphase interaction in the system 
“sol.st.(1) – sol.st.(2)”currently remains in its infancy. Nevertheless, 
knowledge of the energy parameters of such interaction is essential for 
modern nanotechnology and the creation of new structures for components 
of nano- and microelectronics. The problem is complicated by the fact 
that the existing modern experimental techniques do not allow direct 
measurements to determine the interfacial energy. In the literature there 
are only fragmentary data on the interfacial interaction of solid phases. In 
particular, in [11] surface phenomena during recrystallization of metals 
are considered, and interphase phenomena between solid metal phases. 
The influence of the substrate, thermodynamic supersaturation and stress 
mismatch between the emerging phase and the substrate are discussed 
in [12]. Based on the energy distribution of the nearest neighbors in [11] 
derived a formula and calculated the surface energy at the boundary of 
polymorphic α – and β – phases of tin, and in the Thomas-Fermi method 
was used to calculate the surface (in this case actually interfacial) energy at 
the boundary of two contacting dissimilar metals.

The calculated values in the order of magnitude coincide with the 
experimental data.

In general, it should be noted that the consistent theory of surface 
(interfacial) energy at the boundary “solid (1) – solid (2)” does not exist 
today. A significant breakthrough in this problem was the work [13], which 
obtained a general thermodynamic formula that allows us to estimate the 
surface energy at different interfacial boundaries, including at the boundary 
“solid phase – solid phase”.

However, the problem can also be considered from another angle. In 
particular, the authors [14] propose to solve it within the framework of the 
thermodynamic theory of the origin of a new phase in a solid. The kinetics 
of phase transformations in the solid phase is determined by the fluctuation 
of the centers of the new phase and their subsequent growth. Since the rate 
of nucleation and growth of the centers depend on the surface energy of the 
interface between the original and new phases, the volume of the transformed 
phase is directly related to the surface energy σtk at the solid-crystal nucleus 
boundary. It has been experimentally established that the formation of a 
crystalline nucleus on a solid-state substrate is easier than homogeneous 
nucleation, as follows from the general thermodynamic representations. 
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The action of the substrate can be associated with a decrease in the value 
of the interfacial energy of the interface “solid phase – crystalline nucleus” 
compared to the surface energy of the nucleus at the interface with steam 
or melt.

For surface energy at the boundary “solid – crystalline nucleus” the 
equation is obtained:

  (2) 

which is true for 0 < θ > 180. Here σрп is the surface energy at the liquid-
vapor boundary, θ is the edge angle of wetting of a solid with liquid. The 
results of calculations based on this formula are in good agreement in order 
of magnitude with the data obtained by other methods [11]. 

The monograph [1] proposes a simple theoretical estimate of the surface 
energy of the separation of two solid phases. In particular, for typical metals 
it is evaluated:

, 

where ∆(HMt)α, ∆(HMt)β is the molar heat of fusion of metals α and β, 
respectively, (αVMt), (βVMt) their atomic (molar) specific volumes.

It is established that, other things being equal, the interfacial energy of 
a solid at the boundary with a crystal is less than the corresponding value 
of the interfacial energy of the interface “solid phase – melt”, which is 
obviously due to the smaller difference in the binding energy of the solid 
phases.

3. Thermodynamic description of interphase interactions  
in composite systems 

Research energy parameters (interfacial energy – γm, interfacial 
tension – σm, work of adhesion – Aad and energy of adhesive bonds – γad) of 
the interphase interaction is based on the considerations of the macroscopic 
approach, culminating in the model relations of nonequilibrium 
thermodynamics and solid state surface physics [2–4].

For the system “metal – dielectric” we use a macroscopic approach, 
which corresponds to the ratio of non-equilibrium thermodynamics and 
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physics of solid surfaces. Let’s consider the system of equations and 
boundary conditions for describing the change of energy parameters (σh, γ),  
which characterize the thermodynamic state of the system of contacting 
bodies [10; 15].

Relations for the thermodynamic model of the surface layer of metal  
(x > 0) (quasistatic situation) can be represented in Cartesian coordinates  
x, y, z (where x is perpendicular to the interface) in the form: 
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∧
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σy + p = 0 (for x = h)                                 (10)

Here γ, σh – surface energy (SE) and the surface tension in the case 
of contact of the metal with inert gas atmosphere (air) with the pressure 
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of SE; h – effective thickness of the surface layer; σij, eij – tensors of 
mechanical stress and strain (i, j = 1,2,3); σ11 = σxx ≡ σx; σ22 = σyy ≡ σy;  
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μc, c – chemical potential and the concentration of impurities; δij – 
Kronecker symbols; e – the first invariant of the strain tensor; ρ – density 
of the material; ωv, ω – volumetric and mass charge density, respectively;  
φ = Ф – Ф0 – deviation of the modified chemical potential Ф of the electrical 
charges from its equilibrium value Ф0 in the volume of the body at a distance 
x > 30 nm from the surface (Ф = Me/ze, Me – chemical potential of the 
conduction electron of the metal; ze – electric charge per unit mass of the 
conduction electrons ([Me] = J/kg, [ze] = C/kg, [Ф] = C)); Ψ – the potential 
of the electric field ([Ψ] = V); ψ = Ψ – Ψ0 – deviation of the potential Ψ from 
its equilibrium value Ψ0; Ψ=Ψ∇= gradE



 – the amplitude of the electrical 
field; ε0 = 8,85 ∙ 10–12 F/m – electric constant; ∆T T T= − 0  – temperature 
change; K, G – the bulk modulus and shear modulus; E, ν – Young’s 
modulus and Poisson’s ratio; Cφ– capacitance; k – the inverse value of 
the distance, at which the volume charge in the surface layer varies by a 
factor e; β – electrostrictive coefficient of thermal expansion; ξ – coefficient 
(dimensionless) that characterizes the change in γ when changing the 
mechanical component γd, for condition when the electric component γe 

remains unchanged ∂
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characteristics of the material (metal) which are included in the equation of 
state (4), (5) and (6) [10]. For more adequate fit of the model given by eq. 
(3–10) to the modern physical notions, it is necessary to take into account 
the offset Zb of the electron double layer with respect to the boundary of the 
solid (metal). For this purpose we use a well-known formula [10]:
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where EF – Fermi energy, EV – the work function of the conduction 
electron and kF – Fermi wave vector. By setting the values of γ and σh (SE 
and tension) in eq. (8) – (10) (taking into account eq. (3) – (7), (11)), we 
obtain a system of 4 equations. In this case we can determine the values 
of ξ, k, β and geometrical characteristics h of the surface layer for the 
metal, which is in contact with an inert gas atmosphere (air) at a pressure  
p = 100 kPa. Using the value of k, we can find Cφ and Ф0 with the help of 
the eq. (9) and (11):
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where We – the bulk density of the conduction electrons of the metal away 
from the surface (at a distance of more than 30 nm, [We] = 1/m3).

For most of metals values of the surface tension σh are determined 
experimentally [11]. The surface energies γ of the metals are determined 
both experimentally and theoretically. Among the theoretical studies one 
should note partial results obtained for a number of metals using the method 
of density functional [16; 17]. According to the authors, the empirical 
formula for γ in steel [18] has good consistency with the experimental data. 
Hence it has been applied for a number of other metals:
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,                                         (13)

where R – atomic radius, aR, aС – empirical constants (aR = 7128; aС = 110 J/m2).
Surface tension σh and surface energy γ are connected by Hering’s 
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of the surface energy during surface layer deformation at a constant 
temperature.

Based on the model, wherein the interfacial layer consists of two parts, 
the interfacial energy γm and interfacial tension σm at the interface between 
the substrate (semiconductor or insulator) ‒ metal are defined by the 
following relations:
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Here ξm-physical characteristics of the interfacial layer (dimensionless) 
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mechanical components of the interfacial energy γm respectively, as in eq. (8).
Finally, by the analogy to the equilibrium condition of the surface layer 

we can write the equilibrium condition for the interfacial layer as in [15]:
∂
∂
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Boundary conditions. Let us formulate boundary conditions for metal – 
insulator (or semiconductor) interface (at x = 0) which corresponds to the 
electrical double layer. This interface is formed by conduction electrons 
from the side of metal and by bounded electrical charges from the side of 
dielectric [10]:

φ σ σ σ σ+ −
+ − + − + −= − = − = = =Φ0; ; ; ; ;              z Z j je x xe y y x x  

          Ψ Ψ Ω+ − + − + − + −= = = − =; ; ; ,
 

u u E E D Dx xτ τ                 (18)

where σ σ σx y z
± ± ±=,   – mechanical stresses along directions which are 

perpendicular to the interface between two media respectively;  


u ±  displacement; 
Eτ

± – tangential component of the electrical field; D Px x
± ±,  – components of the 

electrical field induction and polarization vectors respectively are directed 
along the normal (axis x) towards the plane of interface (x = 0); Ω – density 
of the surface (excess, uncompensated) charges (created by free electrons). If 
the metal surface is not charged from the outside, then Ω = 0.

The work of adhesion Aad and adhesive bonds energy γad are defined 
based on the known relations [15]:

Aad h ph m= + −σ σ σ ,  γ γ γ γad p m= + − ,                      (19)
where σph and γp – surface tension and energy of a dielectric which 

contacts with an inert gas medium (air) in which the pressure is 100 kPa.

4. Peculiarities of interphase interaction  
in the systems “copper – metal (Zn)”, “copper – semiconductor (Si)” 

and “copper – dielectric (quartz)”
As an example of the application of the above thermodynamic description 

and quantitative comparison, we analyze the interphase interaction in 
“alternative” and at the same time typical systems: “copper – metal (Zn)”, 
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“copper – semiconductor (Si)” and “copper – dielectric (quartz)”. have 
an excellent nature of the near-surface layers (bound charges – metal 
and dipole complexes – dielectric, semiconductor). This comparison will 
allow to analyze the features of the interfacial layers between solids with 
significantly different surface charge and different mechanical parameters 
without using complex information about the specifics of the band surface 
structure of each of the contacting solids.

In the calculations we use the following numerical values of physical 
constants for copper (indices (+)), zinc (indices (-)), silicon (-), quartz (-):

E + = 118 GPa; ν+= 0.372; ω+= 8.45 ∙ 1028 1/m3; 
σh+= 2.125 N/m, γ+= 1.623 J/m2 (Cu);

E– = 81 GPa; ν– = 0.25; ω– = 13.1 ∙ 1028 1/m3; 
σh – = 0.9 N/m, γ– = 1.01 J/m2 (Zn);

E– = 70 GPa; ν– = 0.25; ω– = 7.92 ∙ 1028 1/m3; 
σh – = 1 N/m, γ– = 0.737 J/m2 (quartz).

Here, the values of surface energies γ+, γ– were obtained using the method 
of atomic interactions and relations (16).

According to calculations using the method of decomposition by a 
small parameter (small parameter for metal – bм = bФ0; for semiconductor 
or dielectric – bмс = bс ∙ Zс) within the system of equations (3–11) due to 
the solution of contact and contact-boundary value problems for room 
temperature values of energy and adhesion characteristics of the material 
of the interfacial layer:

a) “Cu – Zn” system – γm = 0.089 J/m2; σm = 0.112 N/m; Aad = 3.023 N/m;
za = Aad / σm =27.0; Wad = 2.434 J/m2; zad = Wad / Wm = 27.3;  

ze = γ3/Wm = 0,0376. (2.12)
b) “Cu – quartz” system – γm = 0.307 J/m2; σm = = 0.44 N/m;  

Aad = 2.685 N/m;
za = Aad / σm = 6.1; Wad = 2.053 J/m2; zad = Wad / Wm = 6.68;  

ze = γ3/Wm = 0.133. (2.13)
The electrical components of the interphase energy in the contact 

metals “Cu – Zn” (zea = 0.0376) and in the systems “Cu – Si” (zeb = 0.111),  
“Cu – quartz” (zec = 0.133) differ significantly, respectively, by 2.95 and 
3.54 times (zeb/zea = 0.111 / 0.0376 = 2.95; zec/zea = 0.133 / 0.0376 = 3.54).
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It was found that the energy of γad adhesion bonds in the systems  
“Cu – Zn”, “Cu – Si”, “Cu – quartz” does not differ much in absolute value 
(Wada = 2.43 J/m2, Wadb = 2, 55 J/m2, Wadc = 2.05 J/m2). However, the ratio 
zada = Wada/Wm for the system of two metals (zada = 27.3) is several times 
greater than that in the system “metal – nonmetal” (zadb = Wadb/Wm = 9,9;  
zadc = Wadc/Wm = 6,68),), ie zada/zadb = 2,76; zada/zadс = 4,09. 

For the systems “Cu – Zn”, “Cu – Si”, “Cu – quartz” specific numerical 
values of interphase tension σm, interphase energy Wm, adhesion work Aad 
and new energy characteristic of the interfacial layer – energy of adhesion 
bonds Wad, which exceeds the interfacial energy Wm. Approximately the 
same number of times the work of adhesion Aad is greater than the interfacial 
tension σm. In particular, for systems: “Cu – Zn” – zada = Wada/Wm = 27,3,  
zaa = Aada/σm = 27,0; “Cu – Si” – zadb = Wadb/Wm = 9,9, zab = Aadb/σm = 8,87; 
“Cu – quartz” – zadс = Wadс/Wm = 6,68, zaс = Aadс/σm = 6,10).

In order to compare with ze = γ3/Wm (zea = 0,0376, zeb = 0,111, zeb = 
0,133) we write the data of the ratio z1= γ1/γ, obtained on the basis of (3– 9)  
z1 = γ1/γ = 0,221 (Cu), z1 = 0,209 (Zn), z1 = 0,241 (Si), z1 = 0,242 (quartz). (20)

We can conclude that the contact of the two media causes both 
absolute and relative reduction of the power of the electric double layer 
near the interface, which follows from the differences between the relative 
components of energy characteristics ze and z1.

Of practical interest for real systems are the temperature dependences of 
interphase energy γm, interphase tension σm and interphase electric charge 
Q. For example, for the system “Cu – Zn” such dependences are calculated 
within the temperature range [0; 1 000oC], presented in Figure 1.

We emphasize that the experimental dependences of the surface tension 
σh on the temperature in the range [0; 1 000°C] for copper, zinc, quartz, 
silicon are linear. They are test for estimating temperature changes of energy 
values γ+, γ– using the method of atomic interactions and taking into account 
the centrally symmetric potential of the central forces of Born-Mayer [10]:

2

6 8 exp ,
q

c d Rqu b
R R R

αβ αβ αβ
αβ αβ

αβ αβ αβ

 
= − − + ⋅   ρ 

                    (21) 

where q is the electric charge of the particles; Rαβ is the distance between 
the particles α and β; cαβ, cαβ, dαβ, bαβ – constants (for materials); ρq is the 
“stiffness” parameter.
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From the calculations it is established that the energy values γ+, γ– for 
copper and zinc are in the range [0; 1 000°C] have a temperature dependence 
close to linear.

Dependences of interphase energy γm, interphase tension σm, interphase 
electric charge Q on temperature in the range T = [0; 1 000°C] for “copper-
quartz” and “copper-silicon” systems are similar to those for “Cu – Zn” and 
differ only quantitatively.

As we can see from the corresponding graphs (Figure 1), the dependences 
of the interphase physical quantities γm = f1(T), σm = f2(T), Q = f3(T) are 
nonlinear and their relative changes in the range [0; 1 000°C] can be 
quantified using the ratios:

∆w = 2(Wm0 – Wm1000))/(Wm0 + Wm1000) = 0,457;
∆σ = 2(σm0 – σm1000)/(σm0 + σm1000) = 0,657;
∆Q = 2(Q0 – Q1000)/(Q0 + Q1000) = 0,484.                      (22)

Here the indices (0), (1000) correspond to the limit temperatures T = 0°C and
 T = 1 000°C.

According to (22) it can be stated that of the analyzed parameters Wm, 
σm, Q undergoes the most significant temperature changes.

Similar dependences are shown in Figure 2, in particular: adhesion 
energy Wad = f4(T), adhesion work Aad = f5(T), the ratio of the electrostatic 

 
Figure 1. Temperature dependences of interphase energy γm, = f1 (T), 

interphase tension σm = f2 (T) and interphase electric charge
Q = f3 (T) for the system “Cu – Zn” 
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component to the total interfacial energy ze = Ze = f6(T) (ze = γ3/Wm), and also 
the ratio zwa = Zwa = 0,1 ∙ 2 ∙ (Aad–Wad)/(Aad+Wad) in the temperature range  
[0; 1000°C] for the “Cu – Zn” system.

Relative changes in physical quantities Wad = f4(T), Aad = f5(T), ze = f6(T), 
zwa = f7(T) для T = [0; 1000°C] can be estimated using the relations of type (22):

∆Wad = 0,495; ∆Aad = 0,370; ∆ze = 0,875; 
∆zwa = 0,458 (zwa = [0,217; 0,346]).                        (23)

Based on (23) we can conclude that among Wad, Aad, ze, zwa the most 
significant temperature changes belong to the parameter ze (∆ze = 0,875) and 
exceed the corresponding changes in the parameter σm (∆σ = 0,657).

5. Modeling of metal condensate growth processes taking  
into account interphase interaction

Let us analyze the growth of a copper film on a silicon substrate taking 
into account changes in surface and interfacial energies in the process of its 
condensation.

When describing the kinetics of metal film formation on the substrate, we 
will be based on the fact that the formation of condensate in the deposition 

 
Figure 2. Temperature dependences of the energy of adhesive bonds 
Wad = f4(T), adhesion work Aad = f5(T), the ratio of the electrostatic 

component to the total interfacial energy ze = Ze = f6(T) (ze = γ3/Wm), 
as well as the ratio Zwa = 0,12 (Aad –Wad)/(Aad+Wad) in the temperature 

range T = [0; 1 000°C] for the “Cu – Zn” system
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process is not correct to describe a simple model with successive layers that 
structurally repeat each other and differ only in the set of corresponding 
modules E1… En. The most expedient is the model of chaotically placed 
microregions, arranged in deformation relative to the substrate (at the 
stage of nanocondensate) or subsequent layers of condensate unfolded, 
respectively, relative to each other during deposition.

 In particular, the kinetics of the deposition process assumes that each 
subsequent layer due to condensation is formed on a pre-directed deformed 
sublayer, which includes chaotically placed microdeformations in the grain 
volumes carried out in light sliding directions characteristic of this crystal 
structure of the film.

 For the initial stage of condensation, taking into account the orientation 
dependence of the Young’s modulus on the angle θ between the directions 
of pre-deformation and the resulting stresses, the system “silicon – copper 
condensate” demonstrates a significant orientation dependence of energy 
parameters of interphase interaction. In particular, the interphase energy 
within the disorientation angle (0–90°) has a “bell-shaped” appearance, 
reaching a maximum value at an angle of 45° (Figure 3).

The energy of the adhesive bonds changes antisymmetrically, reaching 
a minimum at θ = 45°.The behavior of other energy parameters – σm , Aad  

is also characterized by the 
described laws [11].

To quantitatively describe 
the mechanical stresses in a 
thin film from the standpoint 
of interphase interaction, we 
formulate a mathematical 
model of the system “film –  
substrate”. To do this, we  
use the equilibrium equa-
tion for the element of a 
continuous medium [20; 21]  
and the well-known equation 
of electrostatics, which 
connects the electric potential 
Ψ = ψ + Ψ0 with the electric 

 
Figure 3. Anisotropy of interphase 

energy (1) and the energy of adhesive 
bonds (2) in copper-silicon condensates
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charge ω, (follows from Maxwell’s equations). Thus, the main balance 
relations and equations of the model will look like:

Div E σ ρ ω
∧

+ ⋅ ⋅ =


0,                                       (24)
ε ε φ ρω ω0 0∆Ψ ∆= = − = − V ,                                 (25)

Here σ
∧

 the tensor of mechanical stresses with components σij; 
 


E grad grad= − = −ψ Ψ ; ρ ω⋅ ⋅


E  – ponderomotor force; ρ – specific density 
of the material.

The system of equations (24–25) is supplemented by linear equations 
of state for the components of the tensor of mechanical stresses σij and 
the density of electric charge ω, in which the temperature T is taken into 
account as a parameter:

σ α φ δij t ij ijK G e K T Kb Ge= −





 − ⋅ −









 +

2

3
2∆ ,                 (26) 

ω ρω ρ φ γφV tC T bKe= = − ⋅ +( )∆ .                          (27) 
Here δij are Kronecker symbols; e = eii/3 – the first invariant of the 

strain tensor; ∆T = T – T0 – temperature change; K, G – coefficients of 
comprehensive compression and shear; Cφ – specific capacitance; b – 
electrostriction coefficient of volume expansion; αt – is the temperature 
coefficient of volumetric expansion; γt – is the temperature coefficient of 
change of the modified chemical potential of conduction electrons Ф.

To complete the picture, we add the equation of the mechanics of a deformed 
solid, which connects the strain tensor e

∧
 with the displacement vector u

→
:

e Def u
∧ →

= .                                             (28) 
Thus, equations (24, 25) can be solved in displacements.
Using the relationship E x xx = ∂ ∂ = ∂ ∂ - ψ φ/ /  (since the change in the 

electrochemical potential of electrons (ψ + φ) = const in contact media) 
and substituting the value of ρω from (27) to (24) on the boundary x=0, we 
obtain the boundary condition for the component of mechanical stresses 
(that is perpendicular to the boundary):

 σ σ
ε ψ ε φ

x xx x x
≡ = − ⋅

∂
∂







 = ⋅

∂
∂








0

2

0

2

2 2
                       (29)

The second boundary condition is obtained from the continuity 
of electrochemical potentials at the boundary of the media  
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Ψ + Ф = ψ + Ψ0 + φ+ Ф0 = const. Here Ψ = ψ + Ψ0, Ф = φ+ Ф0. At 
the boundary metal – non-conductive gaseous medium (or vacuum)  
Ψ + Ф = const = 0 and get φ = – Ф0, ψ = – Ψ0. Therefore, the second 
boundary condition on the boundary x=0:

φ = – Ф0                                                (30) 
Solve the one-dimensional problem (24), (25) for the potential φand the 

displacement components ux. To do this, there are two equations and the 
two required values of φ, ux. Mechanical stresses and components of the 
electric field of the type E x xx = ∂ ∂ = ∂ ∂ - ψ φ/ /  in the near-surface layer are 
fed through φ, ux. 

Since (24) has a ponderomotor force, problem (24) and (25) are nonlinear. 
To solve it, we use the method of decomposition by a small parameter  
b* = b×Ф0 [23]. The boundary of the media is considered homogeneous along 
the y and z axes (no defects on the surface); x is perpendicular to the boundary.

As a result of solving this one-dimensional problem for the metal region, 
the relations for calculating the potential φ(x) and two relations for σх and 
σу are obtained:

φ( , , ) ;x k kxΦ Φ0 0= − ⋅ −( )exp   k
C

=
ρ

ε
φ

0

;

σ εx o
kx kxx b k k e b K e( , , , )Φ Φ Φ Φ0 0

2 2 2
0

31
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2
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,
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EF and kF – Fermi energy and wave vector; EV – the work of the electron 
out of the metal; We [1/м3] – bulk density of electrons of conductivity of 
metal far from the surface (approximately at a distance greater than 30 nm); 
q0 – electron charge; Zb is the displacement of the electric double layer 
relative to the body boundary.

Using relations (31) and numerical values of constants for silicon 
and copper (Young’s modulus E, Poisson’s ratio ν, surface tension σh and 
energy γ, concentration of free electrons in the metal or particles of bound 
charges q: E–= 154 GPa; ν– = 0.34; q–= 8.38 ∙ 1028 1/m3; σh–= 2.16 N/m,  
γ–= 1.85 J/m2 (Cu); E– = 138 GPa; ν– = 0,27; q–= 5,0 ∙ 1028 1/m3;  
σh–= 1,829 N/m, γ– = 1,623 J/m2 (Si), calculated normal parallel limits of 
stress σуу and strain εу the first boundary layer of copper:

σyy = 5.8 GPa; εy = σyy/E1 = 0.05.                         (32) 
After spraying the next layer, the previous layer becomes internal. 

Under these conditions, the σуу tension relaxes. Deformations to εy = 0,05  
decrease, respectively. In the second layer, the concentration of vacancies 
begins to grow and goes to the ultimate possible value – 5%. However, the 
concentration of vacancies will not reach the limit, because in the process of 
stress relaxation vacancies are annealed and migrate parallel to the interface.

Therefore, depending on the spray rate, a certain type of substructure 
with the appropriate grain size is set. The corresponding grain sizes and film 
thicknesses correspond to a certain level of internal stresses and, according 
to the Hall-Patch ratios, also determined values of σn1. 

It was found experimentally that the most interesting in terms of changes 
in physical and mechanical properties is the range of spray rates:

wn = [wn1; vn2] = [0.2 nm/s; 0.5 nm/s],                     (33) 
which corresponds to the following parameters of the copper film:

Dn = [Dn1; Dn2] = [400 nm; 1600 nm]; σyn = [σyn1; σyn2] = [17 MPa; 51 M Pa];
hn = [hn1; hn2] = = [56 nm; 110 nm].                        (34) 

Here Dn is the grain size, σyn is the maximum normal tensile stresses in 
the film (acting parallel to the boundary and inside the thickness), which 
correspond to the film thickness [hn1; hn2]. Analysis of changes in mechanical 
stresses σyn in the film revealed that the numerical values decrease from 
values slightly smaller than σуу = 5.8 GPa to σyn1, σyn2 continuously without 
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maxima. However, the method based on the Stone formula does not allow 
such stresses to be recorded. There is a transition period during which the 
stresses in the film decrease to a certain value (for example, to σyn1, σyn2), 
and the displacements of the console δ, increase to some maximum values 
(they correspond to σyn1, σyn2). Therefore, stresses of type σyn (in particular, 
σyn1, σyn2) correspond to the end of the transition period of increasing console 
displacements δ, and also determine the stresses from which their values in 
the film can be monitored using a capacitive recorder.

We emphasize that at velocities wn < wn1 and wn < wn2 the maximum 
stresses σyn decrease with increasing velocity. In the range (33) the opposite 
pattern is observed: σyn = [17 MPa; 51 MPa], which obviously corresponds 
to changes in mechanical modules and grain size.

According to the applied experimental method for the range (33) it was 
found out:

E = [E1; E2] = [118 GPa; 128 GPa]; w = [w1; w2] = = [0.372; 0.347]. (35)
The experimentally obtained values of the yield strength σт for films, 

depending on the grain size D, are smaller, compared to polycrystalline 
copper, from 5 to 20%.

Da = 200 nm – σта = 450 MPa; Db = 400 nm – σтb = 370 MPa;
Dc = 600 nm – σтc = 310 MPa; Dd = 800 nm – σтd = 270 MPa. (36)
Let us estimate the change in the interfacial energy of the boundary 

“copper film – silicon substrate” with respect to silicon PE, using the method 
[15; 24]. Calculations, in particular, show that the relative change in interfacial 
energy during the deposition of the first layer of copper film with a grain 
size of 200 nm is 58%. During the deposition of the next layer with a grain 
diameter of 800 nm, the change in interfacial energy is 35%. Thus, the internal 
dimensional effect is accompanied by a change in the energy parameters of 
the interphase interaction between the interacting grains of the film.

Conclusion
1. A mathematical model of interphase interaction and adhesion 

mechanisms in heterophase systems is developed, taking into account the 
basic relations of surface physics and nonequilibrium thermodynamics. 
On the proposed model, a method for quantifying the relationship between 
electrical and mechanical components of the interphase energy of the 
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interacting phases (solid (1) – solid (2)) has been developed. 2. Based on 
the equations of nonequilibrium thermodynamics and surface physics, 
a mathematical model was developed that describes the physical and 
mechanical processes in the surface layers. The definition of surface energy, 
interphase energy, interphase tension is introduced and a new method for 
estimating changes in these physical quantities is proposed, which takes 
into account the distribution of electric charges in the surface layers. 
The division of surface energy into electrostatic and mechanical (elastic) 
components is proposed. Due to this, a method for determining changes 
in surface tension and energy in nonequilibrium conditions (eg external 
mechanical load) has been developed.

3. For systems “Cu – Zn”, “Cu – Si” and “Cu – quartz” shows: a) 
electrical components of interphase energy in contact “Cu – Zn” metals and 
“Cu – Si” and “Cu – quartz” systems are significantly different (2.95 and 
3.54 times, respectively), which indicates a much lower value of the power 
of the electric double layer near the interface two “Cu – Zn” metals in 
relation to the “Cu – Si” semiconductor or “Cu – quartz” dielectric metal; 
b) the energies of Wad adhesion bonds in the systems “Cu – Zn”, “Cu – Si”, 
“Cu – quartz” differ slightly in absolute value, but the value of the ratio  
zad = Wad / Wm for the system of two metals is several times higher, than 
similar in the system “metal – non-metal”(zada/zadb = 2,76; zada/zadс = 4,09. 

4. On the basis of thermodynamic principles, taking into account changes 
in surface and interfacial energies, the process of copper film formation 
is analyzed. In the system “silicon-condensate of copper” the orientation 
dependence of energy parameters of interphase interaction (γm, γad, σm, Аad).
is established. Quantitative estimates of mechanical stresses for the layered 
film growth model were performed. The resulting internal stresses in copper 
condensates recorded during cantilever deposition are an integral result of 
the action of statistically distributed local stresses in the film plane due to 
the anisotropy of the energy parameters of the interphase interaction in the 
condensate plane. The range of deposition rates (0.2 ÷ 0.5 nm ∙ s-1) of copper 
condensates on single-crystal Si substrates is characterized by anomalous 
changes in mechanical stresses due to changes in mechanical modules and 
grain sizes of copper condensate. 
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