24th International scientific conference Riga, the Republic of Latvia

DOI https://doi.org/10.30525/978-9934-26-597-6-9

AUTOMATION OF PROVING THE PROGRAMS CORRECTNESS
IN THE FRAMA-C SYSTEM

Yevhen Holovko™, Viktors Gopejenko??
1ISMA University of Applied Sciences, Latvia, ?Ventspils University
of Applied Sciences, Latvia
*Corresponding author’s e-mail: e.golovko@outlook.com

Abstract

The automation of program correctness verification is a crucial aspect of
modern software development, especially for systems where reliability and
security are paramount. This research investigates the use of Frama-C, a
framework for deductive verification of C programs, implementing formal
methods to improve software correctness. The paper presents the integration
of weakest precondition (WP) calculus and ACSL (ANSI/ISO C Specification
Language) annotations, demonstrating how Frama-C’s WP plugin facilitates
automated verification, using external theorem provers like Alt-Ergo, CVC4,
Z3, and Yices. By formalizing program properties, this work explores how
formal methods can ensure the correctness of C programs, as because
traditional testing approaches have limitations so are not preferrable in high-
reliable or secure systems. The findings underscore Frama-C’s potential in
developing high-assurance software.

Keywords: Program correctness, formal methods, Frama-C, weakest
precondition, automated verification

1 Introduction

The increasing complexity of software systems and their integration into
critical applications — such as healthcare, aviation, and automotive industries —
has made software correctness a crucial factor. Traditional testing approaches
are unable to guarantee that a program is error-free under all conditions, they
can only validate a program for a subset of possible inputs. Which is not
acceptable particularly in mission-critical applications where even a single
error can lead to catastrophic consequences. As a result, formal methods,
specifically automated program correctness verification, are the best option.

Frama-C is a modern framework that leverages formal verification to
ensure the correctness of C programs. By using weakest precondition (WP)
calculus and ACSL annotations, Frama-C offers a way to mathematically

52

Riga, the Republic of Latvia April 24-25, 2025

prove that programs meet their specifications. This paper explores the
capabilities of Frama-C in automating the verification of C programs,
highlighting its strengths in comparison to traditional testing methods.

2 Overview

The need for automated verification arises from the limitations of manual
testing. Manual or auto-testing, while useful in identifying errors, does not
provide the mathematical guarantee that a program behaves correctly for all
possible execution paths. Deductive verification, on the other hand, allows for
a formal proof of correctness that covers all possible execution scenarios.

Frama-C, a tool designed for deductive verification of C programs, enables
such formal verification. This framework integrates the weakest precondition
(WP) calculus with ACSL annotations. ACSL allows developers to define
preconditions, postconditions, and other program properties in a formal way.
By annotating C code with ACSL specifications, developers can describe the
intended behavior of the program, which Frama-C then uses to generate proof
obligations. These obligations are then validated using theorem provers,
which determine whether the program satisfies the specified properties. The
main idea here is to prove that the conditions under which a program’s
execution results in a desired postcondition.

//@ ensures \result == ((a < b) 2 b : a);
int maxab (int a, int b)

{

return (a < b) ? b : a;

}

LISTING 1: Source Code of the maxAB.c Program with ACSL Contract

By using Frama-C’s WP plugin, developers can automatically generate
verification conditions, which can be proven using external theorem provers
such as Alt-Ergo, CVC4, Z3, and Yices.

3 Research Methodology

This paper focuses on automating the proof of program correctness using
Frama-C and its WP plugin. The research methodology includes the following
steps:

1. ACSL Annotation: C programs are annotated with ACSL specifications
that define the program’s behavior, including preconditions, postconditions,
and invariants.

2. Verification: The verification conditions are generated using Frama-C’s
WP plugin. These conditions are then passed to external theorem provers for
proof validation.

53

24th International scientific conference Riga, the Republic of Latvia

3. Experimentation: Various C programs are tested using Frama-C, and
the results of the verification process are analyzed to evaluate the effectiveness
of the tool.

4 Decision

The experiments demonstrate that Frama-C is capable of automatically
proving the correctness of C programs that are annotated with ACSL
specifications. For simple programs, the WP plugin successfully generates
verification conditions, which are then proven by the theorem provers.
However, the complexity of the programs and the annotations required can
impact the efficiency and scalability of the verification process.

AVG Working Time, ms and % of
completed validations

30 100,00%
25 80,00%
20
60,00%
15
40,00%
10
c 20,00%
0 0,00%

Yices CVC4 Alt-Ergo Z3

Figure 1. Average working time and percentage of completed
validations per prover

The integration of multiple theorem provers increases the reliability of the
verification process, as different provers excel at solving different types of
verification conditions. Alt-Ergo and Z3 were the most effective at proving
the generated goals, with Z3 performing better on complex logical formulas,
while Alt-Ergo was more efficient in terms of runtime.

5. Conclusion

This research demonstrates how to automate program correctness
verification using Frama-C instead of manual or auto-testing. Using formal
methods such as weakest precondition calculus and ACSL annotations,

54

Riga, the Republic of Latvia April 24-25, 2025

Frama-C allows developers to formally prove that a program meets its
specifications, providing strong guarantees, unlike traditional testing
approaches.

However, adopting formal methods still presents challenges, especially
when it comes to creating complex ACSL annotation. Future research could
focus on simplifying the process of annotating programs and integrating
Frama-C more seamlessly into standard software development workflows.

References

[1] Dijkstra, E. (1976). A Discipline of Programming. Prentice-Hall.

[2] Gries, D. (1987). The Science of Programming. Springer-Verlag.

[3] Cuoq, P., Filliatre, J.-C., Marché, C., et al. (2012). Frama-C: A Tool
for Static Analysis of C Programs. Formal Methods and Software
Engineering, 423-434.

[4] Hoare, C. A. R. (1969). An Axiomatic Basis for Computer
Programming. Communications of the ACM, 12(10), 576-580.

[5] Dijkstra, E. (1976). The Art of Programming. Addison-Wesley.

[6] Alt-Ergo. (2025). About Alt-Ergo. Available at: https://alt-
ergo.ocamlpro.com

[7] Frama-C. (2025). Frama-C User Manual. Available at:
https://www.frama-c.com

Authors
Yevhen Holovko, 1989, Dnipro, Ukraine.
Current position, grades: master student at ISMA
University.
Scientific interest: theorem proving, weakest
precondition, formal verification.
Viktors Gopejenko, Riga, Latvia
Current position, grades: Professor, Dr. sc. ing.,
Vice President for Research at ISMA University of
Applied Sciences, Director of Study Programme
Computer Systems (MSc)
Scientific interest: Computer Modeling, System
Dynamic

55

