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Abstract 

This article presents a deep learning approach for classifying signals of 

unmanned aerial vehicles (UAVs) based on spectrogram analysis. The 

methodology includes the collection of radio frequency (RF) data via 

Software Defined Radio (SDR), signal transformation into spectrograms 

using Fast Fourier Transform (FFT), and subsequent classification using 

convolutional neural networks (CNNs). The study compares CNN 

performance with traditional machine learning algorithms such as Random 

Forest, Decision Tree, and Support Vector Machine (SVM), highlighting 

CNN's superior performance in classifying spectral data. The model achieves 

up to 92.7% classification accuracy and is optimized for deployment on low-

power hardware like Raspberry Pi. The proposed system offers a cost-

effective and accurate method for real-time UAV detection, suitable for both 

civilian and defense applications. 

Keywords: UAV, neural networks, spectrogram, signal classification, 

SDR, CNN, machine learning 

 

Introduction 

The increasing use of UAVs in military and civilian domains has created 

an urgent need for reliable detection systems. While radar, optical, and 

acoustic methods provide partial solutions, their limitations in urban and 

complex environments necessitate the use of RF signal analysis. UAVs emit 

control signals and telemetry in RF bands that can be captured, transformed 

into spectrograms, and analyzed using artificial intelligence. This article 

explores the implementation of CNN-based spectrogram classification as a 

robust method for UAV signal detection. 

Main Part 

In parallel to real-time classification, the system also supports post-

processing modes in which captured signals are stored in raw IQ format for 

offline analysis. This capability enables further experimentation and 
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retraining on previously unseen signal types. Custom scripts were developed 

to segment, label, and batch-process spectrograms from recorded sessions, 

facilitating dataset expansion and domain-specific training. 

From a usability standpoint, the system includes an LCD interface 

displaying signal type, signal strength, and confidence score in real time. 

Settings for signal duration, FFT resolution, and classification interval can be 

adjusted via a simple button-based menu. This user interface design makes the 

system accessible even to non-technical operators, broadening its applicability 

for rapid deployment. 

An ensemble model strategy was briefly explored by combining the CNN 

classifier with a secondary decision layer using gradient boosting, which 

accepted softmax confidence values as input features. Although this approach 

increased complexity, it yielded a slight improvement in handling ambiguous 

samples–especially those on the class boundary between ELRS and Wi-Fi 

emissions. Confusion matrices and receiver operating characteristic (ROC) 

curves were plotted to assess classification performance in detail across all 

signal categories. Precision, recall, and F1-score metrics demonstrated 

consistent generalization across multiple test datasets. 

A key consideration in the design phase was resilience to adversarial 

attacks, such as intentional signal obfuscation or spectrum jamming. The CNN 

was exposed to perturbed spectrograms during training using adversarial 

augmentation. These experiments showed a 9% drop in accuracy without 

augmentation, reinforcing the need for defensive training strategies in real-

world deployments. 

To further refine the system, experiments were conducted on signal 

characteristics such as modulation type, bandwidth usage, and frequency 

hopping patterns. These traits were used to generate enhanced spectrogram 

features by incorporating color-mapped frequency components and signal 

density estimations. Multiple signal preprocessing pipelines were 

benchmarked to evaluate optimal methods for retaining spectral integrity 

while compressing input data. It was found that log-scaling the spectrogram 

amplitude and applying histogram equalization improved feature extraction, 

leading to marginal gains in model precision. 

The CNN architecture was iteratively tuned using Bayesian optimization, 

targeting parameters such as kernel size, learning rate, and number of filters 

per layer. Early stopping and dropout layers helped mitigate overfitting. 

Feature maps from each layer were visualized using TensorBoard to interpret 

what frequency components the CNN learned to focus on, aiding in 

explainability. 
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The study involved the acquisition of RF signals using a USRP N210 SDR. 

Raw signals were segmented and transformed into 128x128-pixel 

spectrograms using FFT. CNN architecture was implemented using 

TensorFlow and Keras frameworks, with three convolutional layers, max-

pooling, dropout regularization, and softmax activation for multiclass 

classification. 

A dataset containing 3 classes (Wi-Fi, ELRS, and other UAV signals) was 

created and split into training (70%), validation (15%), and test (15%) sets. 

Data augmentation was applied via amplitude scaling, Gaussian noise, and 

time-frequency shifts. CNN achieved 92.7% accuracy, outperforming SVM 

(82%) and Random Forest (75%) 

The model was deployed on Raspberry Pi 4 using TensorFlow Lite, 

enabling real-time classification with minimal computational overhead. 

Signal preprocessing included real-time FFT computation, normalization, and 

automatic class prediction. Integration with alert modules (LED indicators and 

network messages) allowed immediate notification of detected UAV types. 

Real-world validation was also performed using consumer-grade drones 

flying within a 200-meter range. Signal acquisition hardware was mounted on 

a mobile platform, simulating vehicular patrol scenarios. The system 

successfully detected UAV signals despite Doppler shift effects due to drone 

motion. Audio-visual alerts were integrated via LED indicators and sound 

buzzers triggered on successful classification. An Android companion app 

was prototyped using Bluetooth communication to receive alerts and 

spectrogram snapshots from the classifier system. 

The robustness of classification was further validated in outdoor 

environments with varying topographies and reflective surfaces. Data 

collection took place in open fields, wooded areas, and urban courtyards, 

allowing measurement of the impact of multipath propagation and signal 

occlusion. In these tests, system performance remained consistently high 

when antenna placement and calibration procedures were followed. 

The system was also compared to classical spectral anomaly detectors. 

While traditional methods could detect outliers, they lacked the specificity and 

classification granularity provided by CNN-based models. This contrast 

highlights the advantage of supervised learning in high-noise scenarios where 

feature extraction is otherwise complex. 

System Evaluation 

Stress testing was also performed under various RF conditions, including 

interference from mobile devices, Wi-Fi routers, and Bluetooth signals. The 

model consistently maintained above 85% accuracy even in hostile 
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environments, validating its applicability in dense RF landscapes. Latency 

measurements showed that signal capture to classification time remained 

below 250 ms, meeting real-time constraints for field deployment. 

Integration with open-source SDR software such as GNU Radio and 

SDR++ was evaluated to streamline signal acquisition. This allowed the 

system to be extended to support multiple concurrent SDR inputs across a 

distributed architecture. In addition, the system's data logging capabilities 

were extended to include geotagging and timestamping, useful for post-

analysis and forensic applications. 

An extension of the system's functionality is planned for swarm drone 

detection, where multiple UAVs emit overlapping RF signatures. Clustering 

and multi-object tracking algorithms will be introduced to distinguish and 

classify concurrent UAV signals, potentially using time-frequency heatmaps 

and temporal correlation. 

Finally, the creation of an online dashboard for live visualization and map-

based tracking is envisioned. This would allow centralized monitoring of 

UAV activity across distributed sensor nodes, supporting coordinated security 

operations and situational awareness for law enforcement and disaster 

response teams. 

Performance testing under varied environmental noise confirmed CNN’s 

robustness, maintaining over 90% accuracy even with 15% signal distortion. 

Power consumption remained below 3W, confirming the model’s suitability 

for edge deployment. Further testing validated compatibility with signals 

generated by commercial drones and emulated threats using signal generators. 

Compared to commercial systems like DroneShield and Dedrone, the 

proposed system is more cost-effective and customizable. While those 

platforms require multi-sensor arrays and cloud integration, our solution 

operates locally, ensuring autonomy and data privacy. 

 

Future Work 

Another promising direction involves integrating explainable AI (XAI) 

techniques such as saliency maps to visualize the influence of signal regions 

on classification decisions. Additionally, transformer-based models like 

Vision Transformers (ViTs) will be investigated for their ability to process 

large-scale spectrogram data with reduced computation overhead. The 

implementation of federated learning for distributed UAV signal classification 

is also a goal, enabling sensor nodes to collaboratively train models without 

sharing raw data, thereby preserving privacy. 

Scalability to other RF-emitting threats such as radio-controlled IEDs or 

rogue transmitters will also be studied. The use of edge AI accelerators like 
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Coral TPU or NVIDIA Jetson Nano could further enhance deployment 

capabilities. Cross-platform deployment using Docker containers and 

Kubernetes orchestration will ensure high availability in critical infrastructure 

monitoring scenarios. 

The approach also highlights the synergy between affordable SDR 

hardware, edge computing, and AI-based classification, bridging academic 

research and practical deployment. Its portability and independence from 

cloud connectivity address privacy concerns while maintaining performance. 

The framework also serves as an educational toolkit, allowing students and 

researchers to explore the intersection of signal processing and deep learning 

using real-world data. 

Planned improvements include hybrid CNN-RNN models for analyzing 

dynamic signal changes and BLE Mesh integration for distributed sensor 

networks. The dataset will be expanded with real-world flight data and signals 

from various drone models. Research into adversarial robustness will 

strengthen the model against spoofed or encrypted signals. 

Conclusions 

CNN-based spectrogram analysis offers a scalable, accurate, and efficient 

method for UAV signal classification. The system’s open-source 

implementation, hardware compatibility, and real-time capabilities make it 

ideal for embedded applications in security, infrastructure protection, and 

battlefield intelligence. 
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