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Abstract

This article presents a deep learning approach for classifying signals of
unmanned aerial vehicles (UAVs) based on spectrogram analysis. The
methodology includes the collection of radio frequency (RF) data via
Software Defined Radio (SDR), signal transformation into spectrograms
using Fast Fourier Transform (FFT), and subsequent classification using
convolutional neural networks (CNNs). The study compares CNN
performance with traditional machine learning algorithms such as Random
Forest, Decision Tree, and Support Vector Machine (SVM), highlighting
CNN's superior performance in classifying spectral data. The model achieves
up to 92.7% classification accuracy and is optimized for deployment on low-
power hardware like Raspberry Pi. The proposed system offers a cost-
effective and accurate method for real-time UAV detection, suitable for both
civilian and defense applications.
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Introduction

The increasing use of UAVS in military and civilian domains has created
an urgent need for reliable detection systems. While radar, optical, and
acoustic methods provide partial solutions, their limitations in urban and
complex environments necessitate the use of RF signal analysis. UAVS emit
control signals and telemetry in RF bands that can be captured, transformed
into spectrograms, and analyzed using artificial intelligence. This article
explores the implementation of CNN-based spectrogram classification as a
robust method for UAV signal detection.

Main Part

In parallel to real-time classification, the system also supports post-
processing modes in which captured signals are stored in raw 1Q format for
offline analysis. This capability enables further experimentation and
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retraining on previously unseen signal types. Custom scripts were developed
to segment, label, and batch-process spectrograms from recorded sessions,
facilitating dataset expansion and domain-specific training.

From a usability standpoint, the system includes an LCD interface
displaying signal type, signal strength, and confidence score in real time.
Settings for signal duration, FFT resolution, and classification interval can be
adjusted via a simple button-based menu. This user interface design makes the
system accessible even to non-technical operators, broadening its applicability
for rapid deployment.

An ensemble model strategy was briefly explored by combining the CNN
classifier with a secondary decision layer using gradient boosting, which
accepted softmax confidence values as input features. Although this approach
increased complexity, it yielded a slight improvement in handling ambiguous
samples—especially those on the class boundary between ELRS and Wi-Fi
emissions. Confusion matrices and receiver operating characteristic (ROC)
curves were plotted to assess classification performance in detail across all
signal categories. Precision, recall, and F1-score metrics demonstrated
consistent generalization across multiple test datasets.

A Kkey consideration in the design phase was resilience to adversarial
attacks, such as intentional signal obfuscation or spectrum jamming. The CNN
was exposed to perturbed spectrograms during training using adversarial
augmentation. These experiments showed a 9% drop in accuracy without
augmentation, reinforcing the need for defensive training strategies in real-
world deployments.

To further refine the system, experiments were conducted on signal
characteristics such as modulation type, bandwidth usage, and frequency
hopping patterns. These traits were used to generate enhanced spectrogram
features by incorporating color-mapped frequency components and signal
density estimations. Multiple signal preprocessing pipelines were
benchmarked to evaluate optimal methods for retaining spectral integrity
while compressing input data. It was found that log-scaling the spectrogram
amplitude and applying histogram equalization improved feature extraction,
leading to marginal gains in model precision.

The CNN architecture was iteratively tuned using Bayesian optimization,
targeting parameters such as kernel size, learning rate, and number of filters
per layer. Early stopping and dropout layers helped mitigate overfitting.
Feature maps from each layer were visualized using TensorBoard to interpret
what frequency components the CNN learned to focus on, aiding in
explainability.
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The study involved the acquisition of RF signals using a USRP N210 SDR.
Raw signals were segmented and transformed into 128x128-pixel
spectrograms using FFT. CNN architecture was implemented using
TensorFlow and Keras frameworks, with three convolutional layers, max-
pooling, dropout regularization, and softmax activation for multiclass
classification.

A dataset containing 3 classes (Wi-Fi, ELRS, and other UAV signals) was
created and split into training (70%), validation (15%), and test (15%) sets.
Data augmentation was applied via amplitude scaling, Gaussian noise, and
time-frequency shifts. CNN achieved 92.7% accuracy, outperforming SVM
(82%) and Random Forest (75%)

The model was deployed on Raspberry Pi 4 using TensorFlow Lite,
enabling real-time classification with minimal computational overhead.
Signal preprocessing included real-time FFT computation, normalization, and
automatic class prediction. Integration with alert modules (LED indicators and
network messages) allowed immediate notification of detected UAV types.

Real-world validation was also performed using consumer-grade drones
flying within a 200-meter range. Signal acquisition hardware was mounted on
a mobile platform, simulating vehicular patrol scenarios. The system
successfully detected UAV signals despite Doppler shift effects due to drone
motion. Audio-visual alerts were integrated via LED indicators and sound
buzzers triggered on successful classification. An Android companion app
was prototyped using Bluetooth communication to receive alerts and
spectrogram snapshots from the classifier system.

The robustness of classification was further validated in outdoor
environments with varying topographies and reflective surfaces. Data
collection took place in open fields, wooded areas, and urban courtyards,
allowing measurement of the impact of multipath propagation and signal
occlusion. In these tests, system performance remained consistently high
when antenna placement and calibration procedures were followed.

The system was also compared to classical spectral anomaly detectors.
While traditional methods could detect outliers, they lacked the specificity and
classification granularity provided by CNN-based models. This contrast
highlights the advantage of supervised learning in high-noise scenarios where
feature extraction is otherwise complex.

System Evaluation

Stress testing was also performed under various RF conditions, including
interference from mobile devices, Wi-Fi routers, and Bluetooth signals. The
model consistently maintained above 85% accuracy even in hostile
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environments, validating its applicability in dense RF landscapes. Latency
measurements showed that signal capture to classification time remained
below 250 ms, meeting real-time constraints for field deployment.

Integration with open-source SDR software such as GNU Radio and
SDR++ was evaluated to streamline signal acquisition. This allowed the
system to be extended to support multiple concurrent SDR inputs across a
distributed architecture. In addition, the system's data logging capabilities
were extended to include geotagging and timestamping, useful for post-
analysis and forensic applications.

An extension of the system's functionality is planned for swarm drone
detection, where multiple UAVs emit overlapping RF signatures. Clustering
and multi-object tracking algorithms will be introduced to distinguish and
classify concurrent UAV signals, potentially using time-frequency heatmaps
and temporal correlation.

Finally, the creation of an online dashboard for live visualization and map-
based tracking is envisioned. This would allow centralized monitoring of
UAYV activity across distributed sensor nodes, supporting coordinated security
operations and situational awareness for law enforcement and disaster
response teams.

Performance testing under varied environmental noise confirmed CNN’s
robustness, maintaining over 90% accuracy even with 15% signal distortion.
Power consumption remained below 3W, confirming the model’s suitability
for edge deployment. Further testing validated compatibility with signals
generated by commercial drones and emulated threats using signal generators.

Compared to commercial systems like DroneShield and Dedrone, the
proposed system is more cost-effective and customizable. While those
platforms require multi-sensor arrays and cloud integration, our solution
operates locally, ensuring autonomy and data privacy.

Future Work

Another promising direction involves integrating explainable Al (XAI)
techniques such as saliency maps to visualize the influence of signal regions
on classification decisions. Additionally, transformer-based models like
Vision Transformers (ViTs) will be investigated for their ability to process
large-scale spectrogram data with reduced computation overhead. The
implementation of federated learning for distributed UAV signal classification
is also a goal, enabling sensor nodes to collaboratively train models without
sharing raw data, thereby preserving privacy.

Scalability to other RF-emitting threats such as radio-controlled IEDs or
rogue transmitters will also be studied. The use of edge Al accelerators like
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Coral TPU or NVIDIA Jetson Nano could further enhance deployment
capabilities. Cross-platform deployment using Docker containers and
Kubernetes orchestration will ensure high availability in critical infrastructure
monitoring scenarios.

The approach also highlights the synergy between affordable SDR
hardware, edge computing, and Al-based classification, bridging academic
research and practical deployment. Its portability and independence from
cloud connectivity address privacy concerns while maintaining performance.
The framework also serves as an educational toolkit, allowing students and
researchers to explore the intersection of signal processing and deep learning
using real-world data.

Planned improvements include hybrid CNN-RNN models for analyzing
dynamic signal changes and BLE Mesh integration for distributed sensor
networks. The dataset will be expanded with real-world flight data and signals
from various drone models. Research into adversarial robustness will
strengthen the model against spoofed or encrypted signals.

Conclusions

CNN-based spectrogram analysis offers a scalable, accurate, and efficient
method for UAV signal classification. The system’s open-source
implementation, hardware compatibility, and real-time capabilities make it
ideal for embedded applications in security, infrastructure protection, and
battlefield intelligence.
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