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Abstract. Mathematical modelling stationary processes of different
physical nature, e. g. heat conduction (the distribution of temperature
in a body after it has reached thermal equilibrium), electrostatics
(the electrostatic potential in a region subject to boundary conditions),
fluid dynamics (the study of steady, irrotational fluid flows), leads to
boundary value problems for elliptic partial differential equations.
The purpose of the paper is to introduce two methods for finding approximate
solutions to boundary value problems for partial differential equations of
elliptic form. In both methods, a boundary value problem is formulated
as an optimization problem, namely as a differential residual minimization
problem or a minimization problem of a boundary condition error. To find
a solution to the optimization problem, the continuous genetic algorithm
or the differential evolution algorithm can be used. Both algorithms are
reliable and general function optimizers based on population, and mutation,
crossover and selection operation are its three core operations. Methodology
of the study is based on modelling stationary processes of different physical
phenomena by boundary value problems, on methods to solving boundary
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value problems for partial differential equations, on evolutionary algorithms,
and on numerical methods of analysis. Results of the survey showed that
evolutionary algorithms, including genetic algorithms and differential
evolution, are novel powerful techniques for solving optimization problems.
They differ from conventional optimization methods in several key aspects.
They operate on a population of candidate solutions rather than a single
solution, rely solely on the objective function without requiring auxiliary
information, and use probabilistic rather than deterministic transition
rules. Differential evolution and continuous genetic algorithms have been
successfully applied to solve numerous global optimization problems
over continuous spaces. Practical implications. Due to their simplicity
and powerful search the proposed algorithms can be apply for obtaining
optimal parameters of approximate solutions for boundary value problems
which are used to model various physical phenomena in a steady state.
Value/originality. The proposed methods can be considered as viable
alternatives to existing approximate analytical methods for solving boundary
value problems. They can be applied to obtain solutions both linear and
nonlinear problems, and various norms (uniform, quadratic, mean square)
can be given for measuring approximation errors.

1. Introduction

Optimization is the process of choosing the best value from a set of
possible alternatives and is used in various fields: statistics, computer
science, economics, engineering, etc. In mathematics, an optimization
problem is the challenge of finding the best possible outcome for a given
scenario by maximizing or minimizing an objective function, which is
subject to a set of constraints.

In solving optimization problems, Evolutionary Algorithms (EAs) play
an important role (see e.g. [2])). As their name suggests, EAs are inspired by
natural evolution, a process where organisms highly adapted through many
generations of incremental change to thrive in their ecological niche. EAs
are population-based algorithms. Each individual of a population represents
a search point in the space of potential solutions to a given problem.

Evolutionary Algorithms have distinct advantages over many
traditional optimization methods. Unlike methods that search from a single
point, EAs evaluate a population of potential solutions simultaneously.
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This parallel approach allows them to explore the solution space more
broadly and efficiently. EAs only need the objective function values to
operate; they don't require any other information about the behavior of
the objective function. This makes them ideal for problems where the
objective function is non-differentiable, discontinuous, or computationally
expensive. EAs are relatively resistant to getting stuck in local optima.
They are conceptually and computationally simple to implement.

A well-known group of EAs are Genetic Algorithms (GAs), originally
proposed by J.H. Holland [8]. The core idea of GAs is to simulate the
natural evolution on a computer by iteratively refining a population of
potential solutions through key processes: random initialization, evaluation
of a fitness function (which measures the quality of a solution), selection,
crossover (recombination), and mutation. This process ultimately produces
a new generation of solutions that are better suited to the problem at hand.

Depending on the method of representing variables, GAs are divided
into binary GAs and real-coded GAs. A binary GA represents variables
as strings of Os and 1s, making them suitable for problems with discrete
variables. A Continuous GA (CGA) or a real-coded GA uses real (floating-
point) numbers directly to represent variables, offering a more natural
approach for continuous optimization problems and often leading to faster
convergence [7].

Differential Evolution (DE), proposed by R. Storn and K. Price [17],
is one of the best EAs for solving global optimization problems over
continuous spaces. Due to its simplicity and powerful search, it has
exhibited remarkable results on many optimization problems. In the First
International IEEE Competition on Evolutionary Optimization, which was
held in May 1996, it was showed that DE is one of the fastest evolutionary
algorithms [17]. In the past years, quite a few DE variants have emerged
(e.g. [11; 12]).

Due to their powerful functions, DE and GAs are successfully used to
solve problems in various fields (e.g. [10; 25; 19; 21; 5; 23]), including
mathematical physics [1; 20; 6; 13; 22; 24].

The purpose of the paper is to introduce two methods for finding
approximate solutions to Boundary Value Problems (BVPs) for Partial
Differential Equations (PDEs) of elliptic form. In these methods a boundary
value problem is formulated as an optimization problem based on the
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minimization of a differential residual or a boundary condition error. To find
solutions to these optimization problems, it is proposed to use a continuous
genetic algorithm or differential evolution.

The BVPs for elliptic PDEs are used to model various physical
phenomena in a steady state, including heat conduction (the distribution of
temperature in a body after it has reached thermal equilibrium), electrostatics
(the electrostatic potential in a region subject to boundary conditions), fluid
dynamics (the study of steady, irrotational fluid flows), and others.

Methodology of the study is based on modelling stationary processes
of different physical phenomena by BVPs, on methods to solving BVPs for
PDEs, on evolutionary algorithms, and on numerical methods of analysis.

The remaining sections of this paper are organized as follows.
In Section 2, the BVP for the elliptic PDEs is formulated and the review of
methods for obtaining its solution is given. In Section 3, two methods for
finding approximate solutions of the BVP are introduced. Section 4 covers
the description of CGA for solving the BVP. In Section 5, the DE algorithm
is described in detail. Numerical examples and discussion are given in
Section 6. Finally, some concluding remarks are presented in Section 7.

2. Formulation of BVPs for elliptic PDEs
In case of two independent variables x and y a BVP for elliptic PDEs can
be written in the following formal form:

2 2 2
F(x,y,u,a—u Ou Ou Ou Tu j:O in domain D, (1)

S (u,%j =0 on boundary I" of domain D, 2)
7]

where 7 is the external normal to I.

One of the most common methods for integrating the BVPs for the
PDEs is the Fourier method. Its application requires both the differential
equation and the boundary conditions to be linear [14].

The linear BVP for elliptic partial differential equations is formulated
as follows: it is necessary to find the function u =u(x,y) of the class
C*(D) N C'(D) that satisfies the equation

Lu=8u+ ) L g ) Pr e u= gy, G)
Ox oy
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in domain D < R*, and on its boundary T’

0
o+ B2 = h(x, ) (4)
on
o’u u . .
where Au EFJFJ is the Laplace operator or Laplacian, p, g, r,
X
g, h are the continuous functions, a and [ are the given numbers, and

a’+p>>0.

If Green’s function is known, the solution of the BVP for elliptic PDEs
with arbitrary boundary conditions can be written in an explicit form.
For simple canonical domains, the method of mirror reflections, the method
of conformal reflections, and some special methods are used to construct
Green’s function for the Laplace operator [26, p. 148].

A well-known analytical method for solving BVPs is the method of
integral transforms, which often reduces PDEs to equations with a smaller
number of variables, and sometimes to ordinary differential or algebraic
equations [26, p. 211]. Like the Fourier method, this approach is applicable
only to linear equations with linear boundary conditions.

To solve BVP (3)—(4), various approximate analytical methods
(the collocation method, the Galerkin method, the least square method and
others can be applied, similar to their use for approximately solving BVPs
for ordinary differential equations [18; 20; 22].

An effective approach for obtaining an approximate solution to
BVP (1)—(2) was proposed by L. Collatz [3; 4]. It is based on using the best
approximation tool for functions of several variables.

In this paper, we introduce two methods in which the BVP is formulated
as an optimization problem based on the minimization of a differential
residual or a boundary condition error. To find solutions to these optimization
problems, CGA or DE are used.

3. Two methods for finding approximate solutions
This section describes two methods for finding approximate solutions to
BVPs (1)—~(2) and (3)—(4).
In the first method, the BVP is formulated as a minimization problem
of a differential residual. There is selected a function v(x, y;c,,...,c,) such
that at any values of parameters c,,...,c, satisfies boundary condition (2).
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The function v is substituted into the differential equation (1), resulting in
the differential residual R:
2 2 2
R(x, y; cl,cz,u-,cn):F(x,y,v,@ LA j o)

Note that for BVP (3)—(4), the differential residual R is written as [20]

R(x,y; ¢,,¢y,...5¢,)=Lv—g(x,) . (5)

Next, it is necessary to find such values of ¢, c,,...,c, thatthe differential

residual R could be the least deviating from zero in a given norm in
domain D.

To find these parameter values, we cover the domain D with a two-

dimensional grid £, ={(x;,»,), /=1,...,m} and give a norm |||| for the
residual R. The most commonly used are the quadratic norm
||R(x, Vi €pseensC)|| = ZRz(xl, V15 CseesCy) s (6)
I=1

the root mean square norm

1 m
IR, y; c,.....c,) :i/ZZRZ(x,, V13 ClaeeesC,) s @)
I=1

and the uniform (Chebyshev) norm
||R(x, V3 ClyernsCy) =]1:111§)§n|R(x,,yl; Cps-e-sC,)

: (8)

Thus, the above problem of determining the values of the parameters
¢, ¢, ...,c, for the approximate solution v(x, y;c,,...,c,) can be considered
as the problem of minimizating the differential residual R:

||R(x,y;c1,...,cn) — min . 9)

The parameter values, at which this minimum is achieved, are called the
best or optimal.

To find the optimal parameter values for the approximate solution v,
CGA or DE can be used (these algorithms are described in detail below).

In the second proposed method, there is selected a function
v(x,y;c,,...,c,) such that at any values of parameters c,,...,c, exactly
satisfies differential equation (1) (or equation (3) for the linear BVP).
The function v is substituted into boundary conditions (2), resulting in the
boundary condition error €:
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s(x,y;c,,...,cn)zS(v,a—‘ij. (10)
on

For BVP (3)—(4), the error €is written as
s(x,y;cl,...,cn):(xv+[32—v—h(x,y), (109
n

It is necessary to find such values of ¢,,c,,...,c,, that the boundary
condition error € could be the least deviating from zero in a given norm on
the boundary I.

We cover the boundary I' with the grid E, ={(x,,»,), [=1,...,m}
and select one of norms (6)—(8). Then, the problem of determining the
best values of ¢,,c,,...,c, for the approximate solution v is reduced to the
problem of minimizing the boundary condition error & :

||s(x,y;cl,...,cn)|—>cmin . (11)

5 Cn

The global minimum of the error & equals 0. It is achieved at the
exact solution u. To find the optimal parameter values for the approximate
solution v, CGA or DE are used.

Note that using uniform norm (8) allows us to estimate the error of the
approximate solution for the first BVP (when [ =0in (4)) in the whole
domain D =DUT based on the error on the boundary I'. As the difference
u —v between the exact and approximate solutions is a harmonic function
of x and y, the value of the boundary condition error & is simultaneously
the maximum value of |u —v| in D. This fact demonstrates one of the
significant advantages of using the uniform norm to solving BVPs for elliptic
PDEs, where the principle on achieving a maximum on the boundary of the
domain [14, p. 213] holds for the modulus of the difference u —v .

It should be added that the described methods can also be used to find
approximate solutions for BVPs given in polar coordinates (see Section6).

4. CGA for finding optimal parameter values
GAs are optimization methods that mimics biological evolution as
a problem-solving strategy. For using GAs, an optimization problem is
formulated in such a way that its solution can be presented in the form of a
vector ("chromosomes"), components of which are the parameters ("genes")
characterizing this solution. GAs process a population of chromosomes
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with three operations: selection, crossover and mutation. Chromosome
evaluation is performed by means of the fitness function that depends on
the specific optimization problem.

For optimization problems (9) and (11), it is more convenient to use
a CGA, which offers a more natural approach to continuous optimization
problems and often leads to faster convergence. In CGA, a chromosome is
a vector of floating point numbers whose size is kept the same as the length
of the vector, which is the solution to the problem [7]. For problems (9) and
(11), a chromosome will consist of n genes. Each gene is a real number and
presents a certain parameter ¢, of the approximate solution v(x, y;c,,...,c, ).

To construct CGA for any problem, it is necessary to determine the best
genetic operators (crossovers and mutations) for this problem, the operator for
selecting parent chromosomes for crossover, and the strategy for forming a
new generation. It should be noted that CGA operators are usually determined
by trial and error based on an analysis of the results obtained [21].

For solving minimization problem (9) and (11), we offer the
following CGA.

1. The initial generation (G=0) involves Np chromosomes

S$,8,,...,8y,- The genes s,,s,,,...,s,, of each chromosome S§; (i =1, Np)

are random numbers generated from a specified numerical interval
(by default the interval is set as [ —1,1]).

2. Bach chromosome §,, i =1, Np , is evaluated by its value of fitness

function Fit. For optimization problem (9), Fit(S,) is calculated by the
formula

Fit(S,) =|R(x, y; 5,0.05,)]| - (12)
For optimization problem (11), Fit(S,) is computed using the formula

Fit(Si)=||8(x,y;s“,...,sm.)|. (13)
Here |||| is one of norms (6)—(8). For example,

Fit(S,) :lgla); | €(X;, Vp5 SpysenesS,;) |,

for uniform norm (8) and the boundary condition error €.

The closer the fitness value Fi#(S,) is to zero, the fitter the chromosome,
and the closer the values of parameters encoded in its genes to their optimal
values.
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Note that in the first proposed method, the values of derivatives are
required to determine in the points of the grid £, ={(x,,y,), /=1,...,m}
. The derivatives can be calculated in two ways: numerically (with a
certain order of smallness) and analytically. Since the differentiation is
always performed according to strict rules, the analytical calculation of
the derivative doesn’t present any particular difficulties. Furthermore, the
analytically calculated derivative can be more accurate.

3. The selection of parents for crossover is performed according to a
paired tournament selection procedure. Two chromosomes are randomly
chosen from the population, and the one with the higher fitness function
value is placed in an intermediate array. After this operation is repeated Np
times, all consecutive pairs of chromosomes from the intermediate array are
subjected to crossover.

4. For recombination, linear crossover is used. Each pair of parents,
S, and S,, produces three offspring 0.5S,+0.5S,, 1.55,-0.5S, and
1.58,-0.5S, [27]. In such problems, this crossover outperforms most
crossover operators [21].

5. The mutation operator arbitrarily alters one gene of one randomly
selected offspring with a prescribed probability Pm. The gene’s value is
replaced with a new value chosen randomly from a user determined range
(by default the range [ - 0.5, 0.5] is set).

The mutation probability Pm is a control parameter of the algorithm.
A recommended value for Pm, determined in computational experiments
[21],1s 0.1.

The mutation operator allows to increase the structural variability of
the population and restore lost or unexplored genetic material into the
population to prevent the premature convergence of the algorithm to
suboptimal solutions [7].

6. Reduction and selection. At the step of forming the next generation
(G+1), only Np chromosomes with the lowest value of the fitness function
are included from the extended population of parents and offspring.

7. The algorithm stops if one of the following conditions is satisfied:

— a given maximum number of generations G, is reached (by default
G,. =200);

— the fitness function value of the best chromosome in a current
generation is less than a user-determined constant oc (see Section 6).
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If none of the above conditions is fulfilled, the passage to step 3 is
carried out.

The efficiency and performance of CGAs depend on the settings of the
control parameters, in particular, the population size (Np). It effects on the
convergence speed of the CGA. Small population sizes suffer from a greater
number of generations needed for convergence and a higher probability of
getting stuck in local minima, while large population sizes suffer from a
larger number of fitness function evaluations, which leads to an increase
in the execution time of the CGA. The optimal Np values depends on the
number 7 of genes in a chromosome. For optimization problems (9) and
(11), based on the results of computational experiments [21], the following
values of the population size are offered: Np =150+200 for n=3 and
Np =200+300 for n=4.

5. DE algorithm for obtaining optimal parameter values

The DE algorithm operates on a population of n-dimensional real-
parameter vectors, each of them encodes a potential solution. Similar to
CGA, the DE algorithm begins with a randomly generated population of
vectors. The population then evolves iteratively through the application
of mutation, crossover, and selection operators until a stopping
criterion is met.

For each vector (known as the target vector), the mutation operator
creates a mutant vector by combining other vectors from the current
population. The crossover operator mixes the coordinates of the mutant
and target vectors to generate a a so-called trial vector. The mutation and
crossover operators are aimed at diversifying the search, providing a wider
overview of the search space and a higher probability of localizing the
global extremum of the objective function.

The selection operator compares the objective function values of the
trial vector and the target vector. The vector with the better objective
function value is chosen to become a member of the next generation. This
process guarantees that the population size remains constant throughout the
algorithm's operation.

In each generation, the best vector is identified to monitor the progress of
the search for an optimal solution. The DE algorithm stops when a specific
condition (or conditions) is met, for example, reaching a satisfactory value
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of the optimization criterion, exhaustion of a predefined maximum number
of generations, etc.

The DE algorithm can be considered as a modification of CGA.
However, its key distinguishing feature is the source of the "noise" used
during mutation. Unlike genetic algorithms, which relies on an external
random number generator, DE uses an "internal" noise source. This noise
is generated from the difference between two or more randomly selected
vectors from the current population. This approach allows the algorithm to
effectively model the "terrain" of the objective function and quickly pass
through ravines. This is why DE is so effective even in complex terrains.

Furthermore, unlike genetic algorithms, in DE each vector in the
generation is not compared against all the vectors in the current generation,
but only against its counterpart in the current generation which replaces if
better fitted.

A computational scheme of the DE algorithm for finding optimal
parameters of approximate solutions for boundary value problem (1)—(2)
(or problem (3)—(4)) is given below.

1. The generation number G =0 is established and the population
consisting of vectors 4, =(aq,,,...,a,), i =1,..., Np, is created. Here vector
coordinates a,, j=1,...,n, are random real numbers from [ -1, 1].

2. The values of the objective function F (V) is calculated by the formula

F(4,)=|R(x, y; a,...,a,)|, i=1,...Np, (14)
for problem (9), and by the formula
F4,)=|etx, y; ay,...,a,)|, i=1,....Np, (15)

for problem (11), where ||

F(A4) =Y R, v ays....a,),

=1

is one of norms (6)—(8). For example,

for uniform norm (6) and the differential residual R.
3.Foreachtargetvector 4., i =1,..., Np ,amutantvector 4, = (d,,...,d,,)
is generated according to
A=A +Fm-(4, -4,),
where 7, r, and r, are random integer numbers from the interval
[LNp], r Tr, Tr, Ti, Fm is the scaling factor (or the mutation force),
a real-valued constant chosen from (0,2].
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4. The trial vector B, =(b,,,...,b,,) is generated by the formula
o a;,ifrand, <Cror j=j,..
" |a, otherwise,

where Cr is the crossover constant, rand is a random real number from
[0,1], j=1,...,n, and index rand e 1,2,...,nA ingj., ..

5. If the trial vector B, has less or equal objective function value F(5;)
than the corresponding target vector 4, the trial vector will replace the
target vector and enter the next generation G +1. Otherwise, 4, will remain
in the next generation.

6. The DE algorithm stops if one of the following conditions is satisfied:

— the maximum number of generations G, is reached (by default
G e = 200);

— the objective function value of the best chromosome in a current
generation is less than a user-determined constant oc.

If none of the above conditions is fulfilled, the passage to step 3 is
carried out.

The DE algorithm performance depends mainly on appropriately
choosing its control parameters: the population size (Np), the scaling factor
(Fm) and the crossover constant (Cr). The parameter Np generally doesn't
require fine-tuning. It’s suggested that a reasonable value for Np should be
in the range of 5n to 10n, where 7 is the number of problem variables [17].

The scaling factor determining the magnitude of the perturbation
during the mutation phase is closely related to the convergence speed.
The value of Fm is crucial for balancing the algorithm's exploration
(searching new areas of the solution space) and exploitation (refining
the search in promising areas). A large value of Fm (e.g., closer to 1 or
greater) results in a larger perturbation, causing the algorithm to take bigger
steps. This promotes exploration, helping to avoid local optima by widely
sampling the search space. A small value of Fm (e.g., closer to 0) results in
a smaller perturbation. This promotes exploitation, allowing the algorithm
to finely tune solutions and converge on a specific optimum. A Fm value
typically ranges from 0.4 to 1 [17; 5]. For the given problem, recommended
values of Fm are between 0.5 and 0.7 [23].

The crossover constant (or crossover rate) takes values in the range [0, 1]
, acting as a probability. A low Cr value (close to 0) results in the trial vector
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being very similar to the original target vector, with only a few components
being inherited from the mutant. This promotes a more local, exploitative
search, refining existing solutions. Conversely, a high Cr value (close to 1)
means that the trial vector will likely inherit most of its components from
the mutant vector. This promotes a high degree of exploration, allowing
the algorithm to make large changes and potentially escape local optima.
For a given problem, recommended values for Cr are between 0.9 and 1 [23].

6. Numerical computation results and discussion

In this section, some numerical problems are studied to demonstrate the
accuracy and applicability of the proposed algorithms. Results obtained are
compared with exact solutions or approximate solutions obtained by other
methods.

All the numerical computations were performed using MATLAB
platform. Due to the stochastic nature of the CGA and the DE algorithm,
ten runs were made for obtaining every result.

Example 1. Consider the following linear BVP:

Au=2x(1-x),0<x<1,0<y<l1;
u0,y)=0, u(l,y)=0,0" " 15 u,(x,00=0, u,(x,1)=0, 0" x" 1.

This is a problem on a stationary distribution of temperature in a uniform
square plate with a heat source of intensity 2x(x —1) acting in its middle, if
the coefficient of internal thermal conductivity is equal to 1, the edges x =0
and x =1 of the plate are kept at zero temperature, and the other two edges
are thermally insulated [15, p. 148].

For approximate solution of this BVP, we select the following
function v:

v(x)=cx(1- x?)+ czx3 (I-x).

This function satisfies the boundary conditions at any values of the
parameters ¢, and c,. Note that the approximate solution is sought as a
function of one variable x , since the free term in the differential equation
is the function of the variable x alone, and the conditions at the edges
x=0 and x=1 do not depend on the variable y) [20]. After substituting
v(x) into the differential equation, the following differential residual
is obtained:

R=-6¢cx+6c,x(1-2x)—-2x(1-x). (16)
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To find the optimal values of the parameter ¢, and ¢, for residual
(16), we give the uniform grid E,,, and root mean square norm (7) for the
residual R in minimization problem (9). Using the proposed CGA with stop
settings G, =50 and p=1.0-10"", the following results

¢, =—0.1666666667, ¢, =0.1666666667 , ||R|=2.4-10"

are calculated. In this case, the approximate solution is
v(x) = -0.166666666667x (1 — x*) +0.166666666667x" (1 - x) =

17)
=0.166666666667( — x* +2x* — x).

The exact solution of the considered BVP is u(x) =(-x* +2x’ —x)/6
[15, p. 150]. A comparison of the values for the exact solution u(x) and the
approximate solution v(x) at the points of computational domain showed
that approximate solution (17) is well consistent with the exact solution u(x)
and for absolute error of the inequality |u —v|<7.8-10™ holds.

For uniform norm (8) of residual (16), the following optimal values of
the parameters ¢, and c,:

¢, =—-0.1666666667, ¢, =0.1666666666 , ||R|| = max| R| =4.5-10"

are computed using the proposed CGA with the same stop settings. In
this case, for the according approximate solution v is well consistent with
the exact solution u(x) and the inequality |u - v| <9.0-10" holds.

If we choose the DE algorithm (with the stop settings G =70,
pn=1.0-10"") and uniform norm (8) to seek the optimal parameter values
of differential residual (16), we obtain the following values of ¢,, ¢, and
||R|| = max| R| :

¢, =—0.1666666667, ¢, =0.1666666667 , |R[|=4.1-10"".
The same optimal values of ¢, and ¢, are computed using the DE

algorithm and root mean square norm (7). The value of ||R|| equals 5.8-107".

For both norms, the approximate solutions obtained using the DE
algorithm can be written as (17).

Thus, the presented results show that the approximate solutions v(x)
obtained using the proposed CGA and DE are well consistent with the exact
solution u(x).

The average number of objective function evaluations required to
obtain results by the DE algorithm, is 1477 for the root mean square norm



Chapter «Phisical and mathematical sciences»

and 1427 for the uniform norm. The average number of fitness function
evaluations needed to obtain results using the CGA, is 3184 for the root
mean square norm and 3431 for the uniform norm. The average numbers of
fitness function and objective function evaluations allow us to compare the
convergence speed of the CGA and the DE algorithm.

Example 2. Consider the following problem of static deflection of
a homogeneous rectangular membrane fixed at the edges and unevenly
loaded:
Au=x*-1indomain D={(x,y):-1<x<1,-0.5<y<0.5};

u(x,y) =0 onboundary T ={ (x,y):(|x|=1,-0.5< y<0.5)U(-1<x<1]y|=0.5) }

The approximate solution of this BVP is chosen in the form [9]
4 2

v, y)—f—z——+2ck¢k(x », (18)
where

o =x" =", ¢, =x" —6x7y" +y".

It is easy to verify that function v(x) exactly satisfies the differential
equation for any c¢,. According to the second proposed method,
function (18) is substituted into the boundary conditions and the boundary
condition error ¢ is obtained.

Note that based on the symmetry of the functions ¢, with respect to the
coordinate axes, it is sufficient to minimize the boundary condition error €
on the contour I' ={(x,»):(0<x<1Ly=0.5Ux=10<y<0.5)}, which
constitutes a quarter of the boundary I

To find the optimal values of the parameter ¢, and c,, we select uniform
norm (8) for measuring the error & and cover the contour I" with the grid
Eyy={(x.3)}, - where y, =05, x,=1-0.01 (/=0,100) and x, =1,

=(200-17)-0.005 (I =101,200).

Applying the proposed DE algorithm with stop settings G =70 and
p =0.1, the following results

=0.38786, ¢, =—0.072905, |¢||=0.101708

are computed. Thus, the maximum absolute value of ¢ is 0.101708.

For these parameter values, the approximate solution is written as

4 2
X

v(x,y) = % Y +0.38786(x* — »*)—0.072905 (x* —6x°y* + y*). (19)
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According to the maximum principle for harmonious functions the
inequality | u—v | <0.10171 holds at all points of the domain DUT .
For root mean square norm (7), using the DE algorithm the following
results
¢, =0.512666, ¢, =—0.118308, |¢]|=0.066427

are obtained. The according approximate solution is

4 2
X

v(x, ) :f—z—?+0.512666(x2 —17)—0.118308 (x* — 6x)* + ¥*) . (20)

The maximum absolute error of approximate solution (20) equals
0.13556 on I'. This is 1.3 times more than the error in the case of the
uniform norm.

For both norms, the number of objective function evaluations required
to obtain results is 1490, because the algorithm is stopped when the first
terminal condition fulfill, i.e. maximum number of generations G, is
reached.

Example 3. It is necessary to find a solution to the problem of torsion of
a beam with cross-section D:

Au(x,y)=-1 in domain D, 21
u(x, y)=0 on boundary I of domain D, (22)

The boundary T consists of two line segments y=+1 for |x|” 1 and
two semicircular arcs of radius 1 with centers at points (-1, 0) and (1, 0)
for | x|>1 [3, p. 365].

The approximate solution v(x,y) for BVP (21)-(22) is chosen in the
form:

2

x* 4y

+ ick¢k(x,y) : (23)

V(X,y5€)5...,C,) =
¢, (.9) =Re(x+iy)* > k=1n.
For k =1,6, the functions ¢, can be written as:

05 ) =1 4,0 0) =x" =3" 4y (6,p)=x" —6x7y" + )"
o, (x,») =x° —15)c4y2 +15x2y4 —y6’

b

05 (x,y) = x* = 28x°y” +70x*y* —28x7y° + )
0o (r,y) = x"" —45x°y? +210x°y* —=210x*y°® +45x%y" — " ‘
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The function v(x,y)exactly satisfies differential equation (21) for any
values of coefficients ¢, . According to the second method, function (23) is
substituted in (22) and the boundary condition error € is obtained. As in
Example 2, taking the symmetry reasons, it is sufficient to minimize the &
on the contour T , which constitutes a quarter of the boundary I.

To find the optimal values of the coefficients ¢,, we choose uniform
norm (8) for minimizing the error € and cover the contour [ with the grid
E, ={(x,y): [=0,50}, where x,=1-0.05y,=1, [=0,19 and
y, =cos(l-20)a, x,=1+sin(/—20)a, [=20,50, o =n/60. Using the
uniform norm to solve BVPs for elliptic PDEs has the advantage that the
principle of reaching a maximum at the boundary of the domain is fulfilled
for the difference modulus u —v (see Section 3).

Applying the proposed DE algorithm the optimal values of the
coefficients ¢, and the errors € for approximate solution (23) are computed.
The results obtained for n =2, 3, 5,7 are presented in Table 1. For example,
for n=6, approximate solution (23) is written as

x* 4y’

v0x,y) =— +0.44240961 +0.18099186¢, (x,) — 0.0134257 14, (x,) +

+0.00044738¢, (x, ) + 0.00018263¢ , (x, ) — 0.0000285 14, (x, ')

Note that the coefficient ¢, gives an approximate value for the function
u(x,y) at the midpoint and the estimate ¢, —e<u(0,0)<c +¢ holds
[3, p. 366]. For example, 0.4402 " u(0,0)"” 0.4447 in the case n=6.

Table 1
n Coefficients Error €
2 ¢,=0.4665779, c,= 0.150 0.066578
3 c,=0.44916077, c,= 0.17384999, c,=- 0.015318
4 ¢, = 0.44243986, c,= 0.18134097, ¢ =- 0.003877
5 ¢,=0.442260, c,= 0.18117759, c,=- 0.003681
6 c,=0.44240961, c,= 0.18099186, c,= - 0.002244
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The number of objective function evaluations required to obtain results
1s 650 for n=2, 2014 for n=3, 3320 for n=4, 4640 for n=5, and 7380 for n=6.

When we choose CGA to calculate the optimal values of the coefficients
of function (23), the average numbers of fitness function evaluations were
approximately four times larger than for the DE algorithm.

In paper [18], the values of the coefficients ¢, for the function v(x,y)
and the approximation errors &€ were obtained using the algorithm of the
best uniform approximation for many-variable functions by generalized
polynomials. The results computed by this algorithm practically coincide
with the results obtained using the DE algorithm and CGA. It should be
noted that the algorithm of the best uniform approximation by generalized
polynomials is quite sophisticated and can be applied only in the case of
linear inclusion of coefficients ¢, in the approximate solution v(x,y),
while the DE algorithm and CGA are simple in realization and can be used
in both linear and nonlinear cases.

Example 4. Consider the problem of the stationary temperature
distribution in thin plate having the shape of the circular sector 0 < ¢ < 1t/3
, 0" 7" 1, the radii of which are maintained at zero temperature, and
the arc of the circle is maintained at temperature f(¢). The following
mathematical model corresponds to this problem in the polar coordinate
system [10, p. 129]:

Uy +u, L, =0, 0<r<1, 0<p<n/3, (24)
r r
u(r, 0)=u(r, 1/3)=0, 0" r" 1, (25)
9 b
u(l, ¢)=§n¢ 5_4) ,0<¢<n/3. (26)

The approximate solution v(r,¢) for BVP (24)—(25) is selected in the
form

v(r,d) = Zn:ckr3k sin3k¢ . (27)

For any values of coefficients ¢, , function (27) satisfies differential
equation (24) and boundary condition (25). When substituting the function
v into boundary condition (25), the error ¢ is formed:
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e(d;cp,....c,) =v(1,0) —w(d) e(d;c,,....c,) :ick sin3k¢—%n¢(§—¢j. (28)

To compute the optimal values of the coefficients c,,...,c,, the grid
E,, ={0.9,): n=16,=(-1)n/300,/=1,...,m} is given and uniform

norm (8) for the boundary condition error ¢ is selected.

Table 2 shows the optimal values of the coefficients ¢, and the errors for
approximate solution (27) computed using the DE algorithm for n=3,5,7 .

Note that for all coefficients ¢, with even index k, zero values were
obtained. For example, in the case n =3 the coefficient ¢, equals zero and
the approximate solution is written as

v(r,$) =1.00024617" sin 3¢ +0.04067317° sin9¢ .

The number of objective function evaluations required to obtain results

in the DE algorithm is 1580 for n =3, 3320 for n =5 and 5550 for n=7.

Table 2
n The DE algorithm Fourier’s method
coefficients error coefficients error
¢, =1.0002461 c =l
3 c1 =0.0406731 0.00937 c,=0. 0370370 0.0115
¢, =1.0000409 c,=1
5 ¢,=0.0371963 0.00391 ¢,=0.0370370 0.0052
¢.=0.0100136 ¢.=0.008
¢,=1.0000050 c,=1
—0 0370805 ¢, =0. 0370370
7 C ~0.0080929 0.00210 ¢,~0.008 0.0029
—0 0041670 c, =0.0029155

The solution to problem (24)—(26), obtained by the Fourier method, is
written as [10, p. 130].

0

u(r,0) = Z (2k 7 P 5in32k +1)¢. (29)

In Table 2, the coefficients ¢, and the errors for approximate solutions
formed by the partial sum consisted of the first # terms of infinite sum (29)
are also presented.
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A comparison of the results given in Table 2 shows that the error of
approximate solution (27) with the coefficients obtained using the DE
algorithm is smaller than the error of approximate solutions with Fourier’s
coefficients. This is especially noticeable for small ».

Conclusions

In the paper, two methods for obtaining approximate solutions to BVPs
for elliptic PDEs were presented. In both methods, a BVP is formulated as
an optimization problem. In the first method, it is the problem of differential
residual minimization. In the second method, it is the problem of boundary
condition error minimization. To solve these minimization problems, the
CGA and the DE algorithm were employed.

As evolutionary algorithms, CGA and DE differ from conventional
optimization methods in several key aspects. They operate on a population
of candidate solutions rather than a single solution, they rely solely on the
objective function without requiring auxiliary information, and they use
probabilistic rather than deterministic transition rules.

The CGA and the DE algorithm were described in detail for finding
optimal parameters of approximate solutions to BVPs for elliptic PDEs.
The algorithms can be applied to both linear and nonlinear inclusions of
parameters ¢, in approximate solutions. Besides, various error norms
(uniform, quadratic, root mean square) can be incorporated into the
definitions of objective functions.

The performance of CGA and DE strongly depends on a choice of settings
for control parameters such as the population size, the scaling factor, the
crossover constant, and the mutation probability. The recommended control
parameter settings were given.

To demonstrate the accuracy and applicability of the proposed
algorithms, several examples of solving BVPs were presented. Comparison
between the exact solution and the approximate solution (examples 1 and
4), obtained by the algorithms, showed a high level of agreement. It was
also shown that the errors of approximate solutions computed by DE and
CGA were comparable to those obtained by more sophisticated algorithms.
In terms of computational efficiency, DE required fewer objective function
evaluations than CGA, indicating faster convergence.
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Thus, the proposed two methods for obtaining BVP approximate
solutions using the CGA or the DE algorithms can be considered as viable
alternatives to existing approximate analytical methods for solving BVPs
for elliptic PDEs.

We see the prospects for further research in developing the proposed
approach for obtaining approximate solutions to initial-boundary value
problems for partial differential equations.
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