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Abstract. Mathematical modelling stationary processes of different 
physical nature, e. g. heat conduction (the distribution of temperature 
in a body after it has reached thermal equilibrium), electrostatics  
(the electrostatic potential in a region subject to boundary conditions), 
fluid dynamics (the study of steady, irrotational fluid flows), leads to 
boundary value problems for elliptic partial differential equations.  
The purpose of the paper is to introduce two methods for finding approximate 
solutions to boundary value problems for partial differential equations of 
elliptic form. In both methods, a boundary value problem is formulated 
as an optimization problem, namely as a differential residual minimization 
problem or a minimization problem of a boundary condition error. To find 
a solution to the optimization problem, the continuous genetic algorithm 
or the differential evolution algorithm can be used. Both algorithms are 
reliable and general function optimizers based on population, and mutation, 
crossover and selection operation are its three core operations. Methodology 
of the study is based on modelling stationary processes of different physical 
phenomena by boundary value problems, on methods to solving boundary 
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value problems for partial differential equations, on evolutionary algorithms, 
and on numerical methods of analysis. Results of the survey showed that 
evolutionary algorithms, including genetic algorithms and differential 
evolution, are novel powerful techniques for solving optimization problems. 
They differ from conventional optimization methods in several key aspects. 
They operate on a population of candidate solutions rather than a single 
solution, rely solely on the objective function without requiring auxiliary 
information, and use probabilistic rather than deterministic transition 
rules. Differential evolution and continuous genetic algorithms have been 
successfully applied to solve numerous global optimization problems 
over continuous spaces. Practical implications. Due to their simplicity 
and powerful search the proposed algorithms can be apply for obtaining 
optimal parameters of approximate solutions for boundary value problems 
which are used to model various physical phenomena in a steady state.  
Value/originality. The proposed methods can be considered as viable 
alternatives to existing approximate analytical methods for solving boundary 
value problems. They can be applied to obtain solutions both linear and 
nonlinear problems, and various norms (uniform, quadratic, mean square) 
can be given for measuring approximation errors.

1. Introduction
Optimization is the process of choosing the best value from a set of 

possible alternatives and is used in various fields: statistics, computer 
science, economics, engineering, etc. In mathematics, an optimization 
problem is the challenge of finding the best possible outcome for a given 
scenario by maximizing or minimizing an objective function, which is 
subject to a set of constraints.

In solving optimization problems, Evolutionary Algorithms (EAs) play 
an important role (see e.g. [2])). As their name suggests, EAs are inspired by 
natural evolution, a process where organisms highly adapted through many 
generations of incremental change to thrive in their ecological niche. EAs 
are population-based algorithms. Each individual of a population represents 
a search point in the space of potential solutions to a given problem.

Evolutionary Algorithms have distinct advantages over many 
traditional optimization methods. Unlike methods that search from a single 
point, EAs evaluate a population of potential solutions simultaneously.  
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This parallel approach allows them to explore the solution space more 
broadly and efficiently. EAs only need the objective function values to 
operate; they don't require any other information about the behavior of 
the objective function. This makes them ideal for problems where the 
objective function is non-differentiable, discontinuous, or computationally 
expensive. EAs are relatively resistant to getting stuck in local optima.  
They are conceptually and computationally simple to implement. 

A well-known group of EAs are Genetic Algorithms (GAs), originally 
proposed by J.H.  Holland [8]. The core idea of GAs is to simulate the 
natural evolution on a computer by iteratively refining a population of 
potential solutions through key processes: random initialization, evaluation 
of a fitness function (which measures the quality of a solution), selection, 
crossover (recombination), and mutation. This process ultimately produces 
a new generation of solutions that are better suited to the problem at hand.

Depending on the method of representing variables, GAs are divided 
into binary GAs and real-coded GAs. A binary GA represents variables 
as strings of 0s and 1s, making them suitable for problems with discrete 
variables. A Continuous GA (CGA) or a real-coded GA uses real (floating-
point) numbers directly to represent variables, offering a more natural 
approach for continuous optimization problems and often leading to faster 
convergence [7].

Differential Evolution (DE), proposed by R. Storn and K. Price [17], 
is one of the best EAs for solving global optimization problems over 
continuous spaces. Due to its simplicity and powerful search, it has 
exhibited remarkable results on many optimization problems. In the First 
International IEEE Competition on Evolutionary Optimization, which was 
held in May 1996, it was showed that DE is one of the fastest evolutionary 
algorithms [17]. In the past years, quite a few DE variants have emerged 
(e.g. [11; 12]).

Due to their powerful functions, DE and GAs are successfully used to 
solve problems in various fields (e.g. [10; 25; 19; 21; 5; 23]), including 
mathematical physics [1; 20; 6; 13; 22; 24].

The purpose of the paper is to introduce two methods for finding 
approximate solutions to Boundary Value Problems (BVPs) for Partial 
Differential Equations (PDEs) of elliptic form. In these methods a boundary 
value problem is formulated as an optimization problem based on the 
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minimization of a differential residual or a boundary condition error. To find 
solutions to these optimization problems, it is proposed to use a continuous 
genetic algorithm or differential evolution.

The BVPs for elliptic PDEs are used to model various physical 
phenomena in a steady state, including heat conduction (the distribution of 
temperature in a body after it has reached thermal equilibrium), electrostatics 
(the electrostatic potential in a region subject to boundary conditions), fluid 
dynamics (the study of steady, irrotational fluid flows), and others.

Methodology of the study is based on modelling stationary processes 
of different physical phenomena by BVPs, on methods to solving BVPs for 
PDEs, on evolutionary algorithms, and on numerical methods of analysis.

The remaining sections of this paper are organized as follows.  
In Section 2, the BVP for the elliptic PDEs is formulated and the review of 
methods for obtaining its solution is given. In Section 3, two methods for 
finding approximate solutions of the BVP are introduced. Section 4 covers 
the description of CGA for solving the BVP. In Section 5, the DE algorithm 
is described in detail. Numerical examples and discussion are given in 
Section 6. Finally, some concluding remarks are presented in Section 7.

2. Formulation of BVPs for elliptic PDEs
In case of two independent variables x and y a BVP for elliptic PDEs can 

be written in the following formal form:

F x y u
u

x

u

y

u

x

u

y

u

x y
, , , , , , ,

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂ ∂









 =

2

2

2

2

2

0  in domain D,           (1)

S u
u

n
,
∂
∂







 =

0  on boundary Г of domain D,                  (2)

where n  is the external normal to Г. 
One of the most common methods for integrating the BVPs for the 

PDEs is the Fourier method. Its application requires both the differential 
equation and the boundary conditions to be linear [14].

The linear BVP for elliptic partial differential equations is formulated 
as follows: it is necessary to find the function u u x y= ( ),  of the class 
C D C D2 1( ) ( )∩ that satisfies the equation 
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in domain D R⊂ 2 , and on its boundary Γ
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 is the Laplace operator or Laplacian, p, q, r, 

g, h are the continuous functions, α  and β  are the given numbers, and 
α β2 2 0+ > . 

If Green’s function is known, the solution of the BVP for elliptic PDEs 
with arbitrary boundary conditions can be written in an explicit form.  
For simple canonical domains, the method of mirror reflections, the method 
of conformal reflections, and some special methods are used to construct 
Green’s function for the Laplace operator [26, p. 148].

A well-known analytical method for solving BVPs is the method of 
integral transforms, which often reduces PDEs to equations with a smaller 
number of variables, and sometimes to ordinary differential or algebraic 
equations [26, p. 211]. Like the Fourier method, this approach is applicable 
only to linear equations with linear boundary conditions.

To solve BVP (3)–(4), various approximate analytical methods  
(the collocation method, the Galerkin method, the least square method and 
others can be applied, similar to their use for approximately solving BVPs 
for ordinary differential equations [18; 20; 22].

An effective approach for obtaining an approximate solution to  
BVP (1)–(2) was proposed by L. Collatz [3; 4]. It is based on using the best 
approximation tool for functions of several variables.

In this paper, we introduce two methods in which the BVP is formulated 
as an optimization problem based on the minimization of a differential 
residual or a boundary condition error. To find solutions to these optimization 
problems, CGA or DE are used.

3. Two methods for finding approximate solutions
This section describes two methods for finding approximate solutions to 

BVPs (1)–(2) and (3)–(4). 
In the first method, the BVP is formulated as a minimization problem 

of a differential residual. There is selected a function v x y c cn( ; ), , ,1   such 
that at any values of parameters c cn1, ,  satisfies boundary condition (2). 
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The function v is substituted into the differential equation (1), resulting in 
the differential residual R:
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Note that for BVP (3)–(4), the differential residual R is written as [20]
R x y c c c Lv g x yn( ; ) ( ), , , , ,1 2  = − .                         (5/)

Next, it is necessary to find such values of c c cn1 2, , ,  that the differential 
residual R could be the least deviating from zero in a given norm in  
domain D. 

To find these parameter values, we cover the domain D with a two-
dimensional grid E x y l mm l l= ={( ) }, , , ,1  and give a norm ⋅  for the 
residual R. The most commonly used are the quadratic norm
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and the uniform (Chebyshev) norm
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Thus, the above problem of determining the values of the parameters 
c c cn1 2, ,  for the approximate solution v x y c cn( ; ), , ,1   can be considered 
as the problem of minimizating the differential residual R:

R x y c cn
c cn
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, ,
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→ .                                 (9)
The parameter values, at which this minimum is achieved, are called the 

best or optimal. 
To find the optimal parameter values for the approximate solution v, 

CGA or DE can be used (these algorithms are described in detail below).
In the second proposed method, there is selected a function  

v x y c cn( ; ), , ,1   such that at any values of parameters c cn1, ,  exactly 
satisfies differential equation (1) (or equation (3) for the linear BVP).  
The function v is substituted into boundary conditions (2), resulting in the 
boundary condition error ε :
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For BVP (3)–(4), the error ε is written as
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It is necessary to find such values of c c cn1 2, , , , that the boundary 
condition error ε could be the least deviating from zero in a given norm on 
the boundary Г. 

We cover the boundary Г with the grid E x y l mm l l= ={( ) }, , , ,1  
and select one of norms (6)–(8). Then, the problem of determining the 
best values of c c cn1 2, , ,  for the approximate solution v is reduced to the 
problem of minimizing the boundary condition error ε :

ε( ; ) minx y c cn
c cn
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→ .                          (11)

The global minimum of the error ε  equals 0. It is achieved at the 
exact solution u. To find the optimal parameter values for the approximate  
solution v, CGA or DE are used.

Note that using uniform norm (8) allows us to estimate the error of the 
approximate solution for the first BVP (when β = 0 in (4)) in the whole 
domain D D=  Γ  based on the error on the boundary Г. As the difference 
u v−  between the exact and approximate solutions is a harmonic function 
of x and y, the value of the boundary condition error ε  is simultaneously 
the maximum value of u v−  in D . This fact demonstrates one of the 
significant advantages of using the uniform norm to solving BVPs for elliptic 
PDEs, where the principle on achieving a maximum on the boundary of the 
domain [14, p. 213] holds for the modulus of the difference u v− .

It should be added that the described methods can also be used to find 
approximate solutions for BVPs given in polar coordinates (see Section6).

4. CGA for finding optimal parameter values
GAs are optimization methods that mimics biological evolution as 

a problem-solving strategy. For using GAs, an optimization problem is 
formulated in such a way that its solution can be presented in the form of a 
vector ("chromosomes"), components of which are the parameters ("genes") 
characterizing this solution. GAs process a population of chromosomes 
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with three operations: selection, crossover and mutation. Chromosome 
evaluation is performed by means of the fitness function that depends on 
the specific optimization problem.

For optimization problems (9) and (11), it is more convenient to use 
a CGA, which offers a more natural approach to continuous optimization 
problems and often leads to faster convergence. In CGA, a chromosome is 
a vector of floating point numbers whose size is kept the same as the length 
of the vector, which is the solution to the problem [7]. For problems (9) and 
(11), a chromosome will consist of n genes. Each gene is a real number and 
presents a certain parameter ci  of the approximate solution v x y c cn( ; ), , ,1  .

To construct CGA for any problem, it is necessary to determine the best 
genetic operators (crossovers and mutations) for this problem, the operator for 
selecting parent chromosomes for crossover, and the strategy for forming a 
new generation. It should be noted that CGA operators are usually determined 
by trial and error based on an analysis of the results obtained [21].

For solving minimization problem (9) and (11), we offer the  
following CGA.

1. The initial generation ( G = 0 ) involves Np  chromosomes 
S S SNp1 2, , , . The genes s s si i ni1 2, , ,  of each chromosome Si  (i Np=1, ) 
are random numbers generated from a specified numerical interval  
(by default the interval is set as [ ]−1 1, ).

2. Each chromosome Si , i Np=1, , is evaluated by its value of fitness 
function Fit. For optimization problem (9), Fit Si( ) is calculated by the 
formula

Fit S R x y s si i ni( ) ( )= , ; , ,1  .                              (12)
For optimization problem (11), Fit Si( )  is computed using the formula

Fit S x y s si i ni( ) ( ; )= ε , , ,1  .                               (13)
Here ⋅  is one of norms (6)–(8). For example,

Fit S x y s si
l m

l l i ni( ) ( ; )=
=
max , , ,
, ,1

1


ε ,

for uniform norm (8) and the boundary condition error ε .
The closer the fitness value Fit Si( )  is to zero, the fitter the chromosome, 

and the closer the values of parameters encoded in its genes to their optimal 
values.
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Note that in the first proposed method, the values of derivatives are 
required to determine in the points of the grid E x y l mm l l= ={( ) }, , , ,1
. The derivatives can be calculated in two ways: numerically (with a 
certain order of smallness) and analytically. Since the differentiation is 
always performed according to strict rules, the analytical calculation of 
the derivative doesn’t present any particular difficulties. Furthermore, the 
analytically calculated derivative can be more accurate.

3. The selection of parents for crossover is performed according to a 
paired tournament selection procedure. Two chromosomes are randomly 
chosen from the population, and the one with the higher fitness function 
value is placed in an intermediate array. After this operation is repeated Np 
times, all consecutive pairs of chromosomes from the intermediate array are 
subjected to crossover.

4. For recombination, linear crossover is used. Each pair of parents, 
S1  and S2 , produces three offspring 0 5 0 51 2. .S S+ , 1 5 0 51 2. .S S−  and 
1 5 0 52 1. .S S−  [27]. In such problems, this crossover outperforms most 
crossover operators [21].

5. The mutation operator arbitrarily alters one gene of one randomly 
selected offspring with a prescribed probability Pm. The gene’s value is 
replaced with a new value chosen randomly from a user determined range 
(by default the range [ , ]− 0 5 0 5. .  is set). 

The mutation probability Pm is a control parameter of the algorithm. 
A recommended value for Pm, determined in computational experiments 
[21], is 0.1.

The mutation operator allows to increase the structural variability of 
the population and restore lost or unexplored genetic material into the 
population to prevent the premature convergence of the algorithm to 
suboptimal solutions [7].

6. Reduction and selection. At the step of forming the next generation 
(G+1), only Np chromosomes with the lowest value of the fitness function 
are included from the extended population of parents and offspring.

7. The algorithm stops if one of the following conditions is satisfied:
– a given maximum number of generations Gmax  is reached (by default 

Gmax = 200 );
– the fitness function value of the best chromosome in a current 

generation is less than a user-determined constant ∝  (see Section 6). 
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If none of the above conditions is fulfilled, the passage to step 3 is 
carried out.

The efficiency and performance of CGAs depend on the settings of the 
control parameters, in particular, the population size (Np). It effects on the 
convergence speed of the CGA. Small population sizes suffer from a greater 
number of generations needed for convergence and a higher probability of 
getting stuck in local minima, while large population sizes suffer from a 
larger number of fitness function evaluations, which leads to an increase 
in the execution time of the CGA. The optimal Np values depends on the 
number n of genes in a chromosome. For optimization problems (9) and 
(11), based on the results of computational experiments [21], the following 
values of the population size are offered: Np = ÷150 200  for n = 3  and 
Np = ÷200 300  for n = 4 . 

5. DE algorithm for obtaining optimal parameter values
The DE algorithm operates on a population of n-dimensional real-

parameter vectors, each of them encodes a potential solution. Similar to 
CGA, the DE algorithm begins with a randomly generated population of 
vectors. The population then evolves iteratively through the application 
of mutation, crossover, and selection operators until a stopping  
criterion is met.

For each vector (known as the target vector), the mutation operator 
creates a mutant vector by combining other vectors from the current 
population. The crossover operator mixes the coordinates of the mutant 
and target vectors to generate a a so-called trial vector. The mutation and 
crossover operators are aimed at diversifying the search, providing a wider 
overview of the search space and a higher probability of localizing the 
global extremum of the objective function. 

The selection operator compares the objective function values of the 
trial vector and the target vector. The vector with the better objective 
function value is chosen to become a member of the next generation. This 
process guarantees that the population size remains constant throughout the 
algorithm's operation. 

In each generation, the best vector is identified to monitor the progress of 
the search for an optimal solution. The DE algorithm stops when a specific 
condition (or conditions) is met, for example, reaching a satisfactory value 
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of the optimization criterion, exhaustion of a predefined maximum number 
of generations, etc.

The DE algorithm can be considered as a modification of CGA. 
However, its key distinguishing feature is the source of the "noise" used 
during mutation. Unlike genetic algorithms, which relies on an external 
random number generator, DE uses an "internal" noise source. This noise 
is generated from the difference between two or more randomly selected 
vectors from the current population. This approach allows the algorithm to 
effectively model the "terrain" of the objective function and quickly pass 
through ravines. This is why DE is so effective even in complex terrains.

Furthermore, unlike genetic algorithms, in DE each vector in the 
generation is not compared against all the vectors in the current generation, 
but only against its counterpart in the current generation which replaces if 
better fitted.

A computational scheme of the DE algorithm for finding optimal 
parameters of approximate solutions for boundary value problem (1)–(2) 
(or problem (3)–(4)) is given below.

1. The generation number G = 0  is established and the population 
consisting of vectors A a ai i ni= ( )1 , , , i Np=1, , , is created. Here vector 
coordinates a ji , j n=1, , , are random real numbers from [ ]−1 1, .

2. The values of the objective function F Vi( )  is calculated by the formula
F A ) R x y a ai i ni( ( ; )= , , ,1  , i Np=1,, ,                  (14)

for problem (9), and by the formula
F A ) x y a ai i ni( ( ; )= ε , , ,1  , i Np=1,, ,                  (15)

for problem (11), where ⋅  is one of norms (6)–(8). For example,

F A R x y a ai l l i ni
l

m

( ) ( ; )=
=
∑ 2

1
1

, , , ,

for uniform norm (6) and the differential residual R.
3. For each target vector Ai , i Np=1, , , a mutant vector � � … �A a ai i ni= ( )1 , ,  

is generated according to
A A Fm A Ai r r r= + ⋅ −

1 2 3
( ) ,

where r1 , r2  and r3  are random integer numbers from the interval 
1, Np[ ] , r r r i1 2 3↑ ↑ ↑ , Fm is the scaling factor (or the mutation force),  

a real-valued constant chosen from ( ]0 2, . 
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4. The trial vector B b bi i ni= ( )1 , ,  is generated by the formula

b
a rand Cr j j

aji

ji j rand

ji

=
≤ =






 , if or ,

otherwise,

where Cr is the crossover constant, rand j  is a random real number from 
[ ,1]0 , j n=1,..., , and index rand n∈1 2, , ,  in jrand .

5. If the trial vector Bi  has less or equal objective function value F Bi( )  
than the corresponding target vector Ai , the trial vector will replace the 
target vector and enter the next generation G +1 . Otherwise, Ai  will remain 
in the next generation.

6. The DE algorithm stops if one of the following conditions is satisfied:
– the maximum number of generations Gmax  is reached (by default 

Gmax = 200);
– the objective function value of the best chromosome in a current 

generation is less than a user-determined constant ∝ . 
If none of the above conditions is fulfilled, the passage to step 3 is 

carried out.
The DE algorithm performance depends mainly on appropriately 

choosing its control parameters: the population size (Np), the scaling factor 
(Fm) and the crossover constant (Cr). The parameter Np generally doesn't 
require fine-tuning. It’s suggested that a reasonable value for Np should be 
in the range of 5n to 10n, where n is the number of problem variables [17].

The scaling factor determining the magnitude of the perturbation 
during the mutation phase is closely related to the convergence speed.  
The value of Fm is crucial for balancing the algorithm's exploration 
(searching new areas of the solution space) and exploitation (refining 
the search in promising areas). A large value of Fm (e.g., closer to 1 or 
greater) results in a larger perturbation, causing the algorithm to take bigger 
steps. This promotes exploration, helping to avoid local optima by widely 
sampling the search space. A small value of Fm (e.g., closer to 0) results in 
a smaller perturbation. This promotes exploitation, allowing the algorithm 
to finely tune solutions and converge on a specific optimum. A Fm value 
typically ranges from 0.4 to 1 [17; 5]. For the given problem, recommended 
values of Fm are between 0.5 and 0.7 [23].

The crossover constant (or crossover rate) takes values in the range [ ]0 1,
, acting as a probability. A low Cr value (close to 0) results in the trial vector 
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being very similar to the original target vector, with only a few components 
being inherited from the mutant. This promotes a more local, exploitative 
search, refining existing solutions. Conversely, a high Cr value (close to 1) 
means that the trial vector will likely inherit most of its components from 
the mutant vector. This promotes a high degree of exploration, allowing 
the algorithm to make large changes and potentially escape local optima.  
For a given problem, recommended values for Cr are between 0.9 and 1 [23].

6. Numerical computation results and discussion
In this section, some numerical problems are studied to demonstrate the 

accuracy and applicability of the proposed algorithms. Results obtained are 
compared with exact solutions or approximate solutions obtained by other 
methods.

All the numerical computations were performed using MATLAB 
platform. Due to the stochastic nature of the CGA and the DE algorithm, 
ten runs were made for obtaining every result.

Example 1. Consider the following linear BVP:
∆u x x= −2 1( ) , 0 1< <x , 0 1< <y ;

u y( )0 0, = , u y( )1 0, = , 0 1″ ″y ; u xy ( ), 0 0= , u xy ( ), 1 0= , 0 1″ ″x .
This is a problem on a stationary distribution of temperature in a uniform 

square plate with a heat source of intensity 2 1x x( )− acting in its middle, if 
the coefficient of internal thermal conductivity is equal to 1, the edges x = 0 
and x =1  of the plate are kept at zero temperature, and the other two edges 
are thermally insulated [15, p. 148].

For approximate solution of this BVP, we select the following  
function v: 

v x c x x c x x( ) ( ) ( )= − + −1
2

2
31 1 .

This function satisfies the boundary conditions at any values of the 
parameters c1  and c2 . Note that the approximate solution is sought as a 
function of one variable x , since the free term in the differential equation 
is the function of the variable x alone, and the conditions at the edges 
x = 0  and x =1  do not depend on the variable y) [20]. After substituting 
v x( ) into the differential equation, the following differential residual  
is obtained:

R c x c x x x x= − + − − −6 6 1 2 2 11 2 ( ) ( ) .                        (16)
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To find the optimal values of the parameter c1  and c2  for residual 
(16), we give the uniform grid E101  and root mean square norm (7) for the 
residual R in minimization problem (9). Using the proposed CGA with stop 
settings Gmax = 50  and µ = ⋅ −1 0 10 12. , the following results

c1 0= − .1666666667 , c2 0 1666666667= . , R = ⋅ −2 4 10 13.

are calculated. In this case, the approximate solution is 
v x x x x x( ) .166666666667 ( ) ( )

.16666

= − − + − =

=

0 1 0 166666666667 1

0

2 3.

66666667( 2 ).− + −x x x4 3
   (17)

The exact solution of the considered BVP is u x x x x( ) ( )= − + −4 32 6/  
[15, p. 150]. A comparison of the values for the exact solution u x( )  and the 
approximate solution v x( )  at the points of computational domain showed 
that approximate solution (17) is well consistent with the exact solution u(x) 
and for absolute error of the inequality u v− ≤ ⋅ −7 8 10 12.  holds.

For uniform norm (8) of residual (16), the following optimal values of 
the parameters c1  and c2 :

c1 0= − .1666666667 , c2 0 1666666666= . , R R= = ⋅ −max .4 5 10 13

are computed using the proposed CGA with the same stop settings. In 
this case, for the according approximate solution v is well consistent with 
the exact solution u(x) and the inequality u v− ≤ ⋅ −9 0 10 12.  holds.

If we choose the DE algorithm (with the stop settings Gmax = 70 , 
µ = ⋅ −1 0 10 12. ) and uniform norm (8) to seek the optimal parameter values 
of differential residual (16), we obtain the following values of c1 , c2  and 
R R≡ max :

c1 0= − .1666666667 , c2 0 1666666667= . , R = ⋅ −4 1 10 13. .
The same optimal values of c1  and c2  are computed using the DE 

algorithm and root mean square norm (7). The value of R  equals 5 8 10 13. ⋅ − .
For both norms, the approximate solutions obtained using the DE 

algorithm can be written as (17). 
Thus, the presented results show that the approximate solutions v(x) 

obtained using the proposed CGA and DE are well consistent with the exact 
solution u(x).

The average number of objective function evaluations required to 
obtain results by the DE algorithm, is 1477 for the root mean square norm 
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and 1427 for the uniform norm. The average number of fitness function 
evaluations needed to obtain results using the CGA, is 3184 for the root 
mean square norm and 3431 for the uniform norm. The average numbers of 
fitness function and objective function evaluations allow us to compare the 
convergence speed of the CGA and the DE algorithm.

Example 2. Consider the following problem of static deflection of 
a homogeneous rectangular membrane fixed at the edges and unevenly 
loaded:
∆u x D x y x y

u x y

= − = − < < − < <{ }
=

2 1 1 1 0 5 0 5

0

in domain ( , ): , ;

( ) on bound

. .

, aary ( , ):( , ) ( , )Γ = = − ≤ ≤ − ≤ ≤ ={ }x y x y x y1 0 5 0 5 1 1 0 5. . . .

The approximate solution of this BVP is chosen in the form [9] 

v x y
x x

c x yk k
k

( ) ( ), ,= − +
=
∑

4 2

1

2

12 2
φ ,                           (18)

where
φ1

2 2= −x y , φ2
4 2 2 46= − +x x y y .

It is easy to verify that function v(x) exactly satisfies the differential 
equation for any ck . According to the second proposed method,  
function (18) is substituted into the boundary conditions and the boundary 
condition error ε  is obtained.

Note that based on the symmetry of the functions φk  with respect to the 
coordinate axes, it is sufficient to minimize the boundary condition error ε  
on the contour � ∪Γ = ≤ ≤ = = ≤ ≤{ }( , ):( , ) ( , )x y x y x y0 1 0 5 1 0 0 5. . , which 
constitutes a quarter of the boundary Г.

To find the optimal values of the parameter c1  and c2 , we select uniform 
norm (8) for measuring the error ε  and cover the contour Γ  with the grid 
E x yl l201 0

200
= ( ){ }, , where yl = 0 5. , x ll = ⋅0 01.  ( l = 0 100, ) and xl =1 , 

y ll = −( ) ⋅200 0 005.  ( l =101 200, ). 
Applying the proposed DE algorithm with stop settings Gmax = 70  and 

µ = 0 1. , the following results
c1 = 0.38786, c2 0 072905= − . , ε = 0 101708.

are computed. Thus, the maximum absolute value of ε  is 0.101708.  
For these parameter values, the approximate solution is written as

v x y
x x

x y x x y y( ) ( ) ( ), . .= − + − − − +
4 2

2 2 4 2 2 4

12 2
0 38786 0 072905 6 . (19)
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According to the maximum principle for harmonious functions the 
inequality u v− ≤ 0 10171. holds at all points of the domain D∪Γ .

For root mean square norm (7), using the DE algorithm the following 
results

c1 = 0.512666 , c2 0 118308= − . , ε = 0 066427.

are obtained. The according approximate solution is 

v x y
x x

x y x x y y( ) ( ) ( ), . .= − + − − − +
4 2

2 2 4 2 2 4

12 2
0 512666 0 118308 6 . (20)

The maximum absolute error of approximate solution (20) equals 
0.13556 on Γ . This is 1.3 times more than the error in the case of the 
uniform norm.

For both norms, the number of objective function evaluations required 
to obtain results is 1490, because the algorithm is stopped when the first 
terminal condition fulfill, i.e. maximum number of generations Gmax  is 
reached.

Example 3. It is necessary to find a solution to the problem of torsion of 
a beam with cross-section D:

∆u x y( , ) = −1  in domain D,                            (21)
u x y( , ) = 0  on boundary Г of domain D,                (22)

The boundary Г consists of two line segments y = ±1  for x ″ 1 and 
two semicircular arcs of radius 1 with centers at points ( , )−1 0  and ( , )1 0  
for x ≥1 [3, p. 365].

The approximate solution v x y( , )  for BVP (21)-(22) is chosen in the 
form:

v x y c c
x y

c x yn k k
k

n

( , ; , ) ( , )1

2 2

14
, = −

+
+

=
∑ φ ,                  (23)

φk
kx y x i y k n( , ) ( )= + =−Re , , .2 2 1

For k =1 6, , the functions φk  can be written as:

φ1 1( )x y, = , φ2
2 2( )x y x y, = − , φ3

4 2 2 46( )x y x x y y, = − + ,
φ4

6 4 2 2 4 615 15( )x y x x y x y y, = − + − ,
φ5

8 6 2 4 4 2 6 828 70 28( )x y x x y x y x y y, = − + − + ,
φ6

10 8 2 6 4 4 6 2 8 1045 210 210 45( )x y x x y x y x y x y y, = − + − + − .
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The function v x y( , ) exactly satisfies differential equation (21) for any 
values of coefficients ck . According to the second method, function (23) is

 substituted in (22) and the boundary condition error ε  is obtained. As in
 Example 2, taking the symmetry reasons, it is sufficient to minimize the ε  

on the contour Γ , which constitutes a quarter of the boundary Г.
To find the optimal values of the coefficients ck , we choose uniform 

norm (8) for minimizing the error ε  and cover the contour Γ  with the grid 
E x y ll l51 0 50= ={( , ): }, , where x l yl l= ⋅ =0 05 1. , ,  l = 0 19,  and

 
y ll = −cos ( ) ,20 α  x ll = + −1 20sin ( ) ,α  l = 20 50, , α π= 60 . Using the 

uniform norm to solve BVPs for elliptic PDEs has the advantage that the 
principle of reaching a maximum at the boundary of the domain is fulfilled 
for the difference modulus u v−  (see Section 3).

Applying the proposed DE algorithm the optimal values of the 
coefficients ck  and the errors ε  for approximate solution (23) are computed. 
The results obtained for n = 2 3 5 7, , ,  are presented in Table 1. For example, 
for n=6, approximate solution (23) is written as

v x y
x y

x y x( ) ( , ) 0.01342571 (, . .= −
+

+ + −
2 2

2 34
0 44240961 0 18099186φ φ ,, )y +

+ + −0 00044738 0 00018263 0 000028514 5 6. . .φ φ φ( , ) ( , ) ( , )x y x y x y
.

Note that the coefficient c1  gives an approximate value for the function 
u x y( , )  at the midpoint and the estimate с u с1 10 0− ≤ ≤ +ε ε( , )  holds 
[3, p. 366]. For example, 0 4402 0 0 0 4447. .″ ″u( , )  in the case n=6.

Table 1
n Coefficients Error ε
2 c1= 0.4665779, c2= 0.150 0.066578
3 c1= 0.44916077, c2= 0.17384999, c3=- 0.015318
4 c1= 0.44243986, c2= 0.18134097, c3=- 0.003877
5 c1= 0.442260, c2= 0.18117759, c3=- 0.003681
6 c1= 0.44240961, c2= 0.18099186, c3= - 0.002244
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The number of objective function evaluations required to obtain results 
is 650 for n=2, 2014 for n=3, 3320 for n=4, 4640 for n=5, and 7380 for n=6.

When we choose CGA to calculate the optimal values of the coefficients 
of function (23), the average numbers of fitness function evaluations were 
approximately four times larger than for the DE algorithm. 

In paper [18], the values of the coefficients ck  for the function v x y( , )  
and the approximation errors ε  were obtained using the algorithm of the 
best uniform approximation for many-variable functions by generalized 
polynomials. The results computed by this algorithm practically coincide 
with the results obtained using the DE algorithm and CGA. It should be 
noted that the algorithm of the best uniform approximation by generalized 
polynomials is quite sophisticated and can be applied only in the case of 
linear inclusion of coefficients ck  in the approximate solution v x y( , ) , 
while the DE algorithm and CGA are simple in realization and can be used 
in both linear and nonlinear cases.

Example 4. Consider the problem of the stationary temperature 
distribution in thin plate having the shape of the circular sector 0 3≤ ≤φ π
, 0 1″ ″r , the radii of which are maintained at zero temperature, and 
the arc of the circle is maintained at temperature f ( )φ . The following 
mathematical model corresponds to this problem in the polar coordinate 
system [10, p. 129]:

u
r
u

r
urr r+ + =

1 1
0

2 φφ , 0 1< <r , 0 3< <φ π ,                 (24)

u r u r( ) ( ), ,0 3 0= =π , 0 1″ ″r ,                        (25)

u( )
8 3

1
9

, φ πφ
π

φ= −





 , 0 3≤ ≤φ π .                      (26)

The approximate solution v r( ),φ  for BVP (24)–(25) is selected in the 
form

v r с r kk
k

k

n

( ), sinφ φ=
=
∑ 3

1

3 .                                (27)

For any values of coefficients ck , function (27) satisfies differential 
equation (24) and boundary condition (25). When substituting the function 
v into boundary condition (25), the error ε  is formed:
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ε φ φ φ( ; , , ) ( ) ( )c с v wn1 1 = −, ε φ φ πφ
π

φ( ); , , sinc с с kn k
k

n

1
1

3
9

8 3
 = − −








=
∑ . (28)

To compute the optimal values of the coefficients c сn1, , , the grid 
E r r l l ml l l l101 1 1 300 1= = = − ={( , ): , , }φ φ π( ) , ,  is given and uniform 
norm (8) for the boundary condition error ε  is selected.

Table 2 shows the optimal values of the coefficients ck  and the errors for 
approximate solution (27) computed using the DE algorithm for n = 3 5 7, , . 

Note that for all coefficients сk  with even index k, zero values were 
obtained. For example, in the case n = 3  the coefficient c2  equals zero and 
the approximate solution is written as

v r r r( ), . sin . sinφ φ φ= +1 0002461 3 0 0406731 93 9 .
The number of objective function evaluations required to obtain results 

in the DE algorithm is 1580 for n = 3 , 3320 for n = 5 and 5550 for n = 7 .

Table 2

n The DE algorithm Fourier’s method
coefficients error coefficients error

3 c1 =1.0002461
c3 =0.0406731 0.00937 c1 =1

c3 =0.0370370 0.0115

5
c1 =1.0000409
c3 =0.0371963
c5 =0.0100136

0.00391
c1 =1

c3 =0.0370370
c5 =0.008

0.0052

7

c1 =1.0000050
c3 =0.0370805
c5 =0.0080929
c7 =0.0041670

0.00210

c1 =1
c3 =0.0370370

c5 =0.008
c7 =0.0029155

0.0029

The solution to problem (24)–(26), obtained by the Fourier method, is 
written as [10, p. 130].

u r
k

r kk

k

( )
( )

( ), sin( )φ φ=
+

++

=

∞

∑ 1

2 1
3 2 1

3
3 2 1

0

.                    (29)

In Table 2, the coefficients ck  and the errors for approximate solutions 
formed by the partial sum consisted of the first n terms of infinite sum (29) 
are also presented.
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A comparison of the results given in Table 2 shows that the error of 
approximate solution (27) with the coefficients obtained using the DE 
algorithm is smaller than the error of approximate solutions with Fourier’s 
coefficients. This is especially noticeable for small n.

Conclusions
In the paper, two methods for obtaining approximate solutions to BVPs 

for elliptic PDEs were presented. In both methods, a BVP is formulated as 
an optimization problem. In the first method, it is the problem of differential 
residual minimization. In the second method, it is the problem of boundary 
condition error minimization. To solve these minimization problems, the 
CGA and the DE algorithm were employed.

As evolutionary algorithms, CGA and DE differ from conventional 
optimization methods in several key aspects. They operate on a population 
of candidate solutions rather than a single solution, they rely solely on the 
objective function without requiring auxiliary information, and they use 
probabilistic rather than deterministic transition rules.

The CGA and the DE algorithm were described in detail for finding 
optimal parameters of approximate solutions to BVPs for elliptic PDEs. 
The algorithms can be applied to both linear and nonlinear inclusions of 
parameters ck  in approximate solutions. Besides, various error norms 
(uniform, quadratic, root mean square) can be incorporated into the 
definitions of objective functions.

The performance of CGA and DE strongly depends on a choice of settings 
for control parameters such as the population size, the scaling factor, the 
crossover constant, and the mutation probability. The recommended control 
parameter settings were given.

To demonstrate the accuracy and applicability of the proposed 
algorithms, several examples of solving BVPs were presented. Comparison 
between the exact solution and the approximate solution (examples 1 and 
4), obtained by the algorithms, showed a high level of agreement. It was 
also shown that the errors of approximate solutions computed by DE and 
CGA were comparable to those obtained by more sophisticated algorithms. 
In terms of computational efficiency, DE required fewer objective function 
evaluations than CGA, indicating faster convergence. 
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Thus, the proposed two methods for obtaining BVP approximate 
solutions using the CGA or the DE algorithms can be considered as viable 
alternatives to existing approximate analytical methods for solving BVPs 
for elliptic PDEs.

We see the prospects for further research in developing the proposed 
approach for obtaining approximate solutions to initial-boundary value 
problems for partial differential equations.
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