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INTRODUCTION 

Mechanical systems with non-conservative forces are widely used in the 

life of modern society. Systems with internal sources of energy can be 

attributed to such systems: these are rockets, planes, space stations, oil derricks 

and platforms, turbines, internal combustion engines, metal-cutting machines, 

various cranes, high-pressure pipelines etc. 

The conservative problems of the stability can be solved only with a static 

method while the non-conservative tasks can be served with the help of dynamic 

method which is presented only in the works of professor A. Dashchenko
1
. The 

main element of BEM for the dynamic method is solution of Cauchy problem for 

the bar lateral oscillations considering the longitudinal force. The given solution is 

convenient to be introduced in the matrix form. 
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where fundamental orthonormalized functions have the following view: 
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Expressions (2) proceed to the famous functions of A.N. Krylov
2
 at F=0. 

In contrast to the static method, the critical force in the dynamic method is 

defined in the point where two neighboring frequencies of free oscillations 

become equal (merge). Therefore, the initial data of compressing force is input 

in the program and frequencies (at least two) of free oscillations from the BEM 

frequency equation are defined, 

  0,  FA                                                  (3) 

where  – is the frequency matrix of the bar structures built according to 

the BEM algorithm. Then the value of the compressing force is increased and 

the frequency change is backtraced. The process continues until two 

neighboring frequencies become equal with the certain precision. At the same 

time, the value of the compressing force will be critical, and the whole process 

of its identification is comfortable to be presented in the form of diagrams. 

The problems of stability in the Euler formulation, when the beam 

dimensions and the compressive force change, are reduced to boundary 

problems for ordinary differential equations with variable coefficients 
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where  EI x  is the function of flexural (minimum) rigidity, kNm
2
; 

 x  is transverse deflection, m; 

 N x  is the function of compressive force in the beam section, kN. 

The analytical solution of even such a relatively simple equation causes 

serious mathematical difficulties. In this case, it is necessary to apply the 

numerical methods, for example FEM. This raises questions about the 

accuracy and reliability of the results. Therefore, the problem of the 

development of new approaches to solving this and similar tasks remains 

relevant. 

                                                           
2
 Orobej V. F. Metod granichnyh jelementov v zadachah rascheta mashinostroitel’nyh 

konstrukcij [The method of boundary elements in the problems of calculating engineering 

structures]. Odessa : “Aprel”, 2016. 761 s. 

),( FA
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Currently, the most developed numerical method is the finite element 

method (FEM). The search for alternative approaches led to the emergence of 

a new method, and more precisely, methods of boundary elements (BEM). 

Here, not the entire region under consideration is subjected to discretization, as 

in the finite element method, but only its boundary. In the field of structural 

mechanics, a significant number of works are devoted to this direction. 

However, many problems remain unresolved. 

 

ANALYSIS OF RECENT PUBLICATIONS AND PURPOSE  

OF RESEARCH 
Literature analysis on solution of non-conservative problems of steadiness 

shows, that behavior of complex bar systems such as continuous beams and 

frames. Therefore, let us show BEM algorithm ideally suits for identical 

problem-solving models with any structure of elastic system. A random set of 

bars can be a model of the object. Each of those bars can have an infinite 

number of degrees of freedom. Moreover, displacement, rotation inertia, inside 

and inner friction, optional laws of mass and rigidity change, longitudinal 

forces and other factors can be present. Non-conservativeness of compressing 

forces in BEM is considered with a proper formulation of boundary conditions 

for an elastic system. Boundary conditions are non-linear for a separate bar and 

are linearized considering a smallness of proper dislocation, i.e. the equalities 

are true 

1cos;sin   tg ,                                       (5) 

where ψ – is an angle between the force of F and a normal to the bar axis (Fig. 1). 

Boundary conditions for the force of F in Fig.1, а are quite simple: 

        0;0;0;0;
2

 lQlMlEIlEI 


                       (6) 

In boundary section of the beam for the force of F in Fig.1, b the bending 

moment and shear arise there. 

             lFlQlFlMlEIlEIl 


 sin;;0;0;
2


          (7) 

If non-conservative pressure forces are applied to assemblies of continuous 

beams and frames, then their behavior should be taken into account with the 

boundary conditions of the rods that are a part of this assembly. In this paper, 

we consider the stability problems of bar structures on the application of force 

in Fig. 1. 
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a)                                                                  b) 

Fig. 1. Alternatives of behavior for the compressing non-conservative forces: 

а) following up the rotation angle of the beam section;  

b) the force of F has a fixed line of action 

 

The solution of boundary problems for differential equations with variable 

coefficients attracts researchers by its complexity and a wide practical 

application. The numerical-analytical version of boundary element method 

(BEM) that was developed in the works of prof. Orobey V. F.
3
 can be 

successfully applied to solving differential equations with variable coefficients. 

However, in these works, rods, in which the section change was performed 

only in one direction, were considered. It’s not exactly the general case. At the 

same time, in the scientific literature mathematical approaches to reflect 

changes in the dimensions of section in all directions (for example, a cone) are 

presented. In this regard, we will present the opportunities of BEM for such 

cases. 

The aim of this work is to solve new non-conservative problems with 

continuous beams and plate frames and to study the behavior of these systems 

when using increasing non-conservative compression forces. 

The study also conducts a numerical-analytical version of the boundary 

element method for solving problems of beam stability in the form of a 

truncated cone. 

 

Non-conservative problems of the stability of rod structures 

Continuous beam (Figure 2). 

According to the BEM algorithm, it is divided into separate bars, 

assemblies are numerated and the start and end of each bar are marked with 

arrows. Then the matrices of initial and finite beam parameters are formed. 

These matrices consider the end conditions, boundary conditions and a 

connection between the boundary elements in assemblies. 
                                                           

3
 Gnedenko B. V., Belyaev Yu. K, Solovev A. D. Matematicheskie metodyi v teorii 

nadezhnosti. Moskva : Nauka, 1965. S. 373–375. 
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Fig. 2. Continuous beam loaded with non-conservative forces 

 

Load non-conservativeness in Fig. 2, а is shown in Matrix Y  in the rows 

from 13 to 16. 

If we transfer all parameters from Y  to matrix X , we will receive matrix 

 ,FA  of equation (3) for the given beam 

 

𝑿∗ = 

1 𝐸𝐼𝜐(0)
0−1 = 0;  𝑄0−1(𝑙1) 

; 𝒀 = 

1 𝐸𝐼𝜐(𝑙1)
0−1 = 0 

(8) 

2 𝐸𝐼𝜑(0)
0−1 2 𝐸𝐼𝜑(𝑙1)

0−1 = 𝐸𝐼𝜑(0)
1−2 

3 𝑀(0)
0−1 = 0;  𝑄1−2(𝑙2) 3 𝑀(𝑙1)

0−1 = 𝑀(0)
1−2 

4 𝑄(0)
0−1 4 𝑄(𝑙1)

0−1 

5 𝐸𝐼𝜐(0)
1−2 = 0;  𝑄2−3(𝑙3) 5 𝐸𝐼𝜐(𝑙2)

1−2 = 0 

6 𝐸𝐼𝜑(0)
1−2 6 𝐸𝐼𝜑(𝑙2)

1−2 = 𝐸𝐼𝜑(0)
2−3 

7 𝑀(0)
1−2 7 𝑀(𝑙2)

1−2 = 𝑀(0)
2−3 

8 𝑄(0)
1−2 8 𝑄(𝑙2)

1−2 

9 𝐸𝐼𝜐(0)
2−3 = 0;   𝐸𝐼𝜐(𝑙4)

3−4 9 𝐸𝐼𝜐(𝑙3)
2−3 = 0 

10 𝐸𝐼𝜑(0)
2−3 10 𝐸𝐼𝜑(𝑙3)

2−3 = 𝐸𝐼𝜑(0)
3−4 

11 𝑀(0)
2−3 11 𝑀(𝑙3)

2−3 = 𝑀(0)
3−4 

12 𝑄(0)
2−3 12 𝑄(𝑙3)

2−3 

13 𝐸𝐼𝜐(0)
3−4 = 0;   𝐸𝐼𝜑(𝑙4)

3−4 13 𝐸𝐼𝜐(𝑙4)
3−4 

14 𝐸𝐼𝜑(0)
3−4 14 𝐸𝐼𝜑(𝑙4)

3−4 

15 𝑀(0)
3−4 15 𝑀(𝑙4)

3−4 = 0 

16 𝑄(0)
3−4 16 𝑄(𝑙4)

3−4 = 0 
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(9)

 

For the case of applying force of F according to Fig. 2, в , the next 

elements will be added to the matrix 

    .13,16;9,15
EI

F
A

EI

F
A  

                             
 (10) 

 

(11) 

Let us review a plane frame, which studs 4 times longer than cross-bars 

with the same masses of т and rigidity of EI (fig.3). Similarly, when building 

matrices with initial and finite data and considering boundary data and frame 
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topology, we will come to a dynamic stability matrix (10) for the frame in 

Fig.4, а. Calculation of inertia force of linear movable bars 0-1 and 1-2 leads 

to the increase of the bars 1–3 and 4–2 distributed mass, i.e. 
31

m and 
24

m . 

Here we should use the functions of A.N. Krylov from the bars that are free 

from compressing forces 
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а)                                                                 b) 

Fig. 3. Plane frame: а) force of F follows up the assembly rotation angle 1;  

b) force of F has a fixed action line 

 

As in the case with continuous beam, force of F consideration in 

accordance with Fig. 3, в leads to extension of elements: 

    .17,5;16,3
EI

F
A

EI

F
A  

 

Diagrams representing the changes in frequencies of beam free oscillations 

during force of F increase are provided in Fig. 4. 

The calculations are made in the MATLAB environment at m = EI = 

= l= 1[4]. From the diagrams in Fig.4 it follows that two types of compressing 

forces lead to the same behaviour of continuous beam. First ensues buckling 

mode due to non-conservative forces (flatter or divergence) and then, if the 

beam is not destroyed, comes Euler’s buckling mode. Critical non-

conservative forces are 0,65/0,06468=10 times higher than the first critical 

force of beam compared to Gallilei’s “dead” force. 
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a)                                                       b) 

Fig. 4. Dependencies of the beam oscillation frequency from compressing forces:  

а) – force follows the slope of the elastic curve; b) force has a fixed line of action 

 
The relationships between compressing forces and frequencies of free 

oscillations are provided in Fig. 5 (the calculations are made in the MATLAB 
environment 

           

a)                                                    b) 

Fig. 5. Dependencies of the frame oscillation frequency from compressing forces:  

а) force follows up the assembly rotation angle 1; b) force has a fixed line of action 

 

STABILITY OF COMPRESSED RODS WITH VARIABLE 

RIGIDITY 
Since it is not possible to solve equation (1) analytically, we can propose 

an approximate approach that simplifies the task. It is obvious that continuous 
change of cross section dimensions and other rod parameters can be 
approximately simulated by a stepped dependence (Fig. 6) 

 

  

а b 

Fig. 6. Modeling of a truncated cone by a stepped system 
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Such a replacement is very convenient because at each beam section the 

change in section dimensions (and other parameters) disappears and equations 

with variable coefficients are automatically reduced to equations with constant 

coefficients, which solutions exist and they are the only ones (Cauchy 

problems). The method that will most effectively cope with the calculation task 

of discretized system only remains to be used. The methods of initial 

parameters, displacements, finite elements, etc. can be applied. In our opinion, 

the numerical-analytical version of the boundary element method is most 

suitable here. The essence of this method comes down to elementary 

transformations of matrices of calculated ratios at the boundary value x=li each 

system’s element according to the scheme 

Y(l) = A(l) ∙ X(0) + B(l) → A(l) ∙ X(0) – Y(l) = 

= – B(l) → A*(l) ∙ X*(0,l) = – B(l) ,                            (13) 

where Y(l) is a state parameter vector of all rod system in the boundary 

sections x=li , i=1,n ; 

A(l) is a quasi-diagonal matrix of fundamental functions at x=li , i=1, n ; 

X(0) is a vector of initial parameters of all rod system; 

B(l) is an external load vector at x=li , i=1, n; 

n is a number of elements in the system. 

As a result of parameter transfer from Y(l) to X(0) is a system of linear 

algebraic equations obtained. If it is required to solve eigenvalue problems, 

then B(l) = 0 and at X*(0,l) ≠ 0, the transcendental equation is obtained to 

search for critical forces or natural frequencies in the form of a determinant 

 , , 0.
кр

l F


 A                                             (14) 

By setting the interval for 𝐹кр or , you can always find your own values. 

Matrix  has many remarkable properties: 

1. A strong discharged matrix doesn’t lead to a significant accumulation 

of rounding errors from arithmetic operations; 

2. It is certainly scaled, that is, its elements smoothly decrease in size 

from left to right along the secondary diagonal. This property causes the high 

stability of numerical operations when solving the system of equations (2) or 

when calculating the determinant; 

3. When х=0, it forms the identity matrix; 

4. In problems of stability and dynamics, it doesn’t contain breaking 

points of the 2nd kind; 

5. It is formed without matrix operations of addition, multiplication and 

inversion. Quasidiagonalization operation is only used. 



 ,, kpFlA
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All these advantages allow us to have the simplest algorithm for solving 
various boundary problems, which is characterized by high accuracy results. 
Let us present the BEM algorithm using the examples of the truncated cone 
stability problems reviewed in the works. The stability equation for the 
discretized scheme in Fig. 6, b and the i-th segment will take the form: 

   4 2

4 2
0

i

d x d x
EI F

dx dx

 
  .                                         (15) 

The matrix of fundamental orthonormal functions for this equation is 
known, and has the form: 

 1 2 3 4  
1 1 12

A  13 i
A EI  14 i

A EI   

Ai = 2  22
A  –

12 i
A EI  13 i

A EI  (16) 

 3  32 i
A EI 

·EIi 

22
A  12

A   

4    1  
where 

𝐴12 =
sin (𝑡𝑖𝑥)

𝑡𝑖
; 𝐴13 =

1−cos (𝑡𝑖𝑥)

𝑡𝑖
2 ; 𝐴14 =

𝑡𝑖𝑥−sin (𝑡𝑖𝑥)

𝑡𝑖
3 ; 𝐴22 = cos(𝑡𝑖𝑥) ; 

𝐴32 = sin(𝑡𝑖𝑥) ; 𝑡𝑖 = √𝐹/𝐸𝐼𝑖                                      (17) 

Rigidity parameters entered into matrix Ai for simpler fulfillment of the 

conditions of connection plots in the internal points of the beam. Values 𝐸𝐼𝑖 
are most easily calculated in the middle of each plot. The cross section of the 
cone is a circle, and the diameter varies according to the law (Fig. 1, a): 

   kbxadxd  1
,                                              (18) 

where a, b are coefficients; 
k is exponent. 

Matrix 𝐴∗(𝑙, F) of equation (3) is formed in the following way. Let n = 3 
(Fig. 1. b). The matrices of initial and final parameters of the discretized beam 
are compiled. They take into account the boundary conditions of the bearing 
and the conditions for the continuity of the parameters of bending at the 
internal points. 

From matrix X* it follows that in matrix А* you need to reset 1 and  
3 columns. Independent matrix Y parameters are carried into place of zero 
parameters of matrix X*. Dependent matrix Y parameters are transferred 
according to the equations of their connection. As a result, matrix А* is 
supplemented with compensating elements. The beam stability matrix will 
look like: 
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 1 𝑉(0)
1−2 = 0; 𝜑(𝑙)

3−4  1 𝑉(𝑙)
1−2 = 𝑉(0)

2−3  

 2 𝜑(0)
1−2  2 𝜑(𝑙)

1−2 = 𝜑(0)
2−3  

 3 𝑀(0)
1−2 = 0; 𝑄(𝑙)

3−4  3 𝑀(𝑙)
1−2 = 𝑀(0)

2−3  

 4 𝑄(0)
1−2  4 𝑄(𝑙)

1−2 = 𝑄(0)
2−3  

 5 𝑉(0)
2−3  5 𝑉(𝑙)

2−3 = 𝑉(0)
3−4  

X*= 6 𝜑(0)
2−3 Y= 6 𝜑(𝑙)

2−3 = 𝜑(0)
3−4  

 7 𝑀(0)
2−3  7 𝑀(𝑙)

2−3 = 𝑀(0)
3−4 (19) 

 8 𝑄(0)
2−3  8 𝑄(𝑙)

2−3 = 𝑄(0)
3−4  

 9 𝑉(0)
3−4  9 𝑉(𝑙)

3−4 = 0  

 10 𝜑(0)
3−4  10 𝜑(𝑙)

3−4  

 11 𝑀(0)
3−4  11 𝑀(𝑙)

3−4 = 0  

 12 𝑄(0)
3−4  12 𝑄(𝑙)

3−4  

 

(20)

 

Matrix equations (20) are similarly formed for beams with other support 

conditions. From equation (20) by the search method you can determine the 

critical forces that are provided in the form: 

𝐹кр =
𝜆2𝐸𝐼𝑚𝑖𝑛

𝑙2
=

𝜋2𝐸𝐼𝑚𝑖𝑛

(𝜇𝑙)2
                                      (21) 

where λ is a dimensionless critical force parameter; 

μ is an effective length factor. 

There is dependence between λ and μ. 

λμ = π                                                    (22) 
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The practice of solving problems with variable coefficients shows that the 
results are almost accurate even with the number of plots n ≥ 30. For the 
problems of works matrix А* was formed automatically according to the 
program in MATLAB environment with n = 50. Table 1 presents parameters λ 
for the first three critical forces of various cone-shaped beams with а = 1; 
b = 0,01; k = 1; L = 1. 

 
Table 1 

The first three parameters of critical forces 

Parameter λ 

  

λ1 3,1729 6,3474 

λ2 6,3463 9,0664 
λ3 9,5210 12,6886 

Parameter λ 

  

λ1 4,5378 1,5931 
λ2 7,8023 4,7611 

λ3 11,0157 7,9346 

 
The data in Table 1 can be compared with the results of work. Using the 

Green function allowed us to obtain an accurate result for λ1 with hinged 
support 

λ1 =3,17                                                        (23) 

It can be seen that the BEM results and works coincide. Using the integral 
equations, the approximate value λ1 = 3.11 was obtained in the work. 
Although this result is little different from the accurate result, it is unreliable. 
The value of λ1 for a cone-shaped beam must be greater than π. Table 2 
presents parameter values λ1 depending on the diameter ratio of the cone-
shaped beams with а = 1; L=1; k = 1. 

Table 2 shows that with a smooth change in the transverse dimensions of 
the rod it is possible to significantly increase the critical forces of such 
structures as columns, chimneys, various supports, TV and radio towers, 
towers. 
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Table 2 

Parameters λ1 when changing the diameter ratios of cross section 

𝑑2
𝑑1

 b 

  

2 1 6,2817 12,5658 

3 2 9,4207 18,8627 

4 3 12,5579 25,1635 

5 4 15,6908 31,4722 

6 5 18,8175 37,7929 

𝑑2
𝑑1

 b 

  

2 1 8,9833 4,0583 

3 2 13,4870 6,8630 

4 3 17,9917 9,8194 

5 4 22,4967 12,8452 

6 5 27,0185 15,9060 

 

CONCLUSIONS 
From Fig. 6 it follows that frame behavior significantly differs from behavior 

of continuous beam, where all bars experience the effect of compression force. It 
is significant that in elastic system the possibility of losing reliability in the form 
of flatter or divergence significantly depends on the length of cantilever portions. 
So, with a cantilever length of l taken as 1 meter in the given problems, it would 
be possible to find neither flatter nor divergence of the structures. Also the work 
conclusion stating that complex structures loaded with non-conservative 
compressible forces have a spectrum of intermittent critical forces is approved. 
Therefore, non-conservative forces can cause Euler buckling mode, whose critical 
force is much less compared to the non-conservative critical force. In this respect, 
non-conservative forces in problem of stability of complicated designs are as 
dangerous as conservative forces. 

The analysis of the presented material shows that the method of calculating 
the beam stability with distributed parameters, based on BEM, allows you to 
solve effectively, accurately and reliably the complex problems, which don’t 
have an analytical solution. In particular, for cone-shaped (also pyramid-
shaped) beams, it is not necessary to form a rather cumbersome Green function 
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or to solve the integral equations. In BEM it is sufficient to use only the system 
of fundamental orthonormal functions of the corresponding differential 
equation with constant coefficients. An additional advantage is the minimum 
requirements for variable coefficients of the differential equation. They can 
have breaks of the 1-st kind, break points, and an arbitraty set of continuous 
functions, which significantly expands the range of the solvable problems not 
only in the stability theory, but also in other sciences 

 

SUMMARY 

An algorithm for using the numerical-analytical version of the boundary 

element method to solve the stability problems of non-conservative core 

systems is presented. Such elements are a part of the crane support system. The 

aim of the study is to study the behavior of complex mechanical systems 

loaded with non-conservative compression forces. Similar problems arise in 

heavily loaded structures, and their behavior is of great scientific and practical 

importance. The calculation of the critical force is made in MATLAB. 

This paper also discusses the problems of stability of compressed rods with 

a continuous change in cross-sectional dimensions in different directions. Such 

constructions include columns, various supports, towers, details of cranes, 

machines and mechanisms, various shafts and axles. It is shown that these 

problems are reduced to boundary value problems for ordinary differential 

equations with variable coefficients. To apply the boundary element method, 

rods with variable stiffness are divided into sections with constant stiffness, 

and then the matrices of the basic functions of differential equations with 

constant coefficients are used. 
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