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INTRODUCTION 

Workshops of industrial enterprises often use powerful consumers, 

distorting shape and disturbing voltage symmetry in workshop power 

grid, in one grid with asynchronous motor (AM). Reduced quality of 

power voltage results in pulsation of the moment generated by the motor, 

drop of starting and critical AM moment, increase in vibration, early 

wear of bearing and gear components, increased steel losses due to 

higher harmonic field constituents in a gap, reduction in such power 

indices of asynchronous motor operation as efficiency coefficient and 

power coefficient. Early evaluation of power quality indices and 

provision of adequate modes of electric equipment operation under 

specific conditions is essential research and practice problem. 

The problem solution involves a number of experiments under the 

conditions of different power quality indices, different modes of electric 

equipment operation, and different means to protect the latter from noisy 

power. However, such experiments carried out in the context of a real 

object would result in: significant time consumption because of the 

necessity to wait for such situations when energy within power grids 

corresponds to the required quality indices without mentioning losses of 

electric equipment life; financial expenditures due to the necessity to 

purchase various high-priced devices to protect the electric facilities and 

to rehabilitate electric energy within the grids; and accident threat due to 

the decreased reliability indices of electric facilities operating under the 

considered conditions. 

Computational studies, based upon the development of simulation 

system as well as upon statistical tests by computers, helps accelerate 

and simplify considerably the process of the experiments . The method 

differs from standard experimental ones in the fact that simulation 

model, implemented by a computer, is analyzed rather than the object 

itself. In this context, interaction with the former is performed just as it 
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was done with a prototype system and simulation results are processed 

and tested in such a way as if they were data of full-scale experiments
1
. 

Relying upon features of asynchronous motor (AM) functioning 

within noisy power grid, its electromagnetic model should be completed 

with a subsystem imitating random changes in electrical energy quality. 

The latter may be implemented with the help of generation of linear 

voltage within workshop power grids as well as with the help of the 

indices calculation. 

 

1. Stochastic model of random voltage changes 

in the electrical system of an industrial enterprise 

Direct simulation of linear voltage within a grid with noisy electricity 

is complicated by the fact that all harmonic components have fixed 

frequencies of their oscillations; only random changes in amplitudes and 

initial phases are superimposed on them. In this contest, further analysis 

of AM energy data in terms of its mathematical model involves 

preliminary decomposition of the voltages into the components. It 

follows that it is more expedient to generate amplitudes and initial phases 

of available harmonics, which statistical regularities of changes should 

be obtained previously, rather than the random voltage sequences
2
. 

Fig. 1 represents one of the potential variations of the generator of 

random changes in linear voltages taking into consideration the 

mentioned above
3
. 

In this context, Гγ is generator of “white” noise (i.e. values of 

uniformly distributed uncorrelated random value corresponding to time 

moments t within 0;1 interval);



mABiU

, and 



mBCiU

are converters of 

amplitude distribution laws 1,i n  ‒ harmonics of linear voltages UmAB 

and UmBC respectively; 
ABi , and 

BCi  are converters of the initial 

phase distribution laws 1,i n  ‒ harmonics of the listed voltages UAB , 

                                                 
1 Строгалев В.П. Имитационное моделирование : учеб. пособие. Москва : 

Изд-во МГТУ им. Н.Э. Баумана, 2008. 280 с. 
2 Качан Ю.Г. О моделировании напряжений в электрических сетях 

промышленных предприятий. Електротехніка і електроенергетика. № 1.  

2012. С. 72–75. 
3 M. Tryputen, V. Kuznetsov, A. Kuznetsova, K. Maksim and M. Tryputen, 

Developing Stochastic Model of a Workshop Power Grid, 2020 IEEE Problems of 

Automated Electrodrive. Theory and Practice (PAEP), Kremenchuk, Ukraine, 2020, 

pp. 1-6, doi: 10.1109/PAEP49887.2020.9240898. 
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and UBC; 
mABiUФ , and 

mBCiUФ  are filters generating the correlated 

amplitudes of harmonics of linear voltages UАB , and UВC respectively;

ABi
Ф , and

BCi
Ф are filters generating the correlated initial phases of 

harmonics of the same voltages; ( )

U UmAB mBC

i is amplitude shift of i
th

 

harmonic of linear voltage UВС relative to linear voltage UAВ along the  

axis being determined on their cross-correlation function; and ( ) 


AB BC
i  

is a shift of the initial phase of i
th
 harmonic of linear voltage UВС relative 

to the initial phase of i
th

 harmonic of linear voltage UAВ along the  axis 

being determined on their cross-correlation function. 

 

Fig. 1. Generator of linear voltages 
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According to random changes in amplitudes (UmABi, UmBCi, UmСAi), 

and initial phases (ABi ,BCi ,CAi ) of harmonic components of linear 

voltages, simulated in such a way, their instantaneous values are 

determined. Then the latter are added algebraically in summators 

forming random sequences uAB(tγ), uBC(tγ), and uCA(tγ). 

As it is seen from Fig. 1, initial random process, being a random 

uncorrelated value, distributed on uniform laws within [0;1] interval, is 

simulated by corresponding generator. There are different techniques to 

obtain it; however, to all practical purposes, program method to generate 

pseudorandom sequences (PRS) is the most convenient in this context. In 

their software, the current computers have built-in function to generate 

PRSs helping them solve the majority of problems of signal simulation. 




mABiU ,



mBCiU

, and 
ABi , 

BCi units transform initial random 

signal to those uncorrelated ones predetermined distribution laws. 

Selection of the most efficient signal depends upon the type of the laws. 

Nonlinear transformation methods (i.e. inverse function), piecewise-

linear approximation of distribution law, and a method of elimination (by 

Neumann) are mostly used to perform the operation
4
. 

Generating filters
mABiUФ ,

mBCiUФ , 
ABi

Ф , and 
BCi

Ф  transform 

uncorrelated random sequences with the predetermined distribution laws 

into the correlated ones according to autocorrelation functions of the 

considered values. Nonrecursive filtration of input sequence is one of the 

most popular transformation techniques
5
 : 

0
,


N

n k n kk
y S x                                              (1) 

where   0 ny , and 

 
, ;

0, ,


   

  
  

n k

n k

n k
y y

n k
 

where yn- is output correlated sequence, nx  is input uncorrelated 

sequence, kS SKck are coefficients, n k Kn-k is a value of correlation 

function within n-k)∆ point, and M is expectation symbol. 

                                                 
4 Прохоров С.А. Математическое описание и моделирование случайных 

процессов. Уральск : Самар. гос. аэрокосм. ун-т, 2001. 209 с. 
5 Yaglom, A.M. Correlation Theory of Stationary and Related Random Functions : 

Supplementary Notes and References. (Springer Series in Statistics). Softcover reprint 

of the original 1st ed. 1987 edition. 287 p., Springer, New York; (October 13, 2011). 

https://www.abebooks.com/servlet/SearchResults?an=yaglom&cm_sp=det-_-bdp-_-author
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Random change in linear voltage UBС results from its cross-

correlation function with UAB voltage.  φ
AB,i Ai Bi

междуфазамиU иU .

φAB,i(междуфазамиUAiиUBi).The simplest technique to solve the 

problem is in PRS generation with the prescribed type of a correlation 

function, and its corresponding time interval delay. The fact can explain 

availability of ( )

U UmAB mBC

i and ( ) 


AB BC
i units within the structural circuit. 

Instantaneous value of linear voltage uCA(t) is determined according to 

the known ratio: 

( ).  CA AB BCU U U                                   (2) 

It is clear that (2) dependence use will result in the formation of 

systematic error since values of linear voltage UCA will not correspond to 

a distribution law being typical for it. It is possible to eliminate the error 

while implementing randomly selected sequence (i.e. randomization) of 

linear voltage generation. 

 

2. Identification of statistical models of the electrical system 

of the production structure of an industrial enterprise 

As stated above, the use of statistical modeling technique to simulate 

linear voltages within a workshop power grid with the help of a 

computer, involves availability of information concerning statistical 

regularities of values being modeled. Obtaining of the latter is connected 

with the analysis of random processes, i.e. time functions which can be 

obtained on the basis of passive industrial experiments. 

Currently, the required data are recorded by means of digital 

controlling devices generating random sequence with t  discreteness 

from a continuous signal. Such a transformation may result in so-called 

frequency masking and, as a consequence, in the distortion of the signal 

statistical characteristics. Hence, to avoid the masking errors, initial 

signal should be passed through low-frequency filter while linear voltage 

recording in the context of a certain workshop. 

Parameters of the filter are selected basing upon following 

assumptions. If the recordable analogue linear voltages should be 

digitalized for their further analysis (for instance, over a range  

of fmin= 0 ‒ fн = 0fmax = 2000fв = 2000 Hz), then filter frequency is to 

be determined in accordance with
6
 expression: 

                                                 
6 Бендат Дж. Прикладной анализ случайных данных. Москва : Мир,  

1989. 540 с. 
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max 2000
2500 .

0.8 0.8
  пf

f
f Hz                                (3) 

Hence, the required discreteness interval t  is: 

41 1
2 10 .

2 2 2500

    
пf

t s
f

                         (4) 

While quantizing the analogous signal on a level, it is required to 

provide its ratio to mean-square noise intensity being no less than 80 dB 

(i.e.10
4
 on amplitude)104поамплитуде). That can be achieved, if 

following condition is fulfilled: 

42
10 ,

0.289


n

                                             (5) 

where n is the number of bits per one counting. 
While taking the base-10 logarithm of both sides of the equation, we 

obtain 0.301n = 3.46, i.e. n = 11.5 n 11,5 n = 11,5. Thus, 12 is the 

number of bits required to quantize analogue signal per one counting. 

Among all the available industrial detectors, such a device as SCPED 

(i.e. a system to control parameters of electric drives) by RPE Center for 
Electromechanical Diagnostics Ltd transforms analogue signal with the 

prescribed signal/noise ratio. 

During industrial experiment, carried out in the context of rolling 

plant 1 of Dneprospetsstal OJSC (Zaporozhie), implementations of 

random sequences of linear voltages with 22-24 hour duration were 

obtained. Initial stage of such random sequences should determine their 

classification. The procedure makes it possible to identify the process 

kind (i.e. steady-flow or transient one); its type (i.e. additive, 

multiplicative, or additive-multiplicative one); as well as a type of a 

deterministic component (i.e. linear, exponential, repetitive, or repetitive 

extinction process). 

Correct classification determines broadly reasonableness of further 

statistical processing; as a rule, it is identified according to a scheme 

represented in fig. 2. 

In this context: ME is mathematical expectation; SFRP and TRP are 

steady-flow and transient random processes respectively; and CF is 

correlation function. 

It is common knowledge that linear voltages are polyharmonic 

sequence being a full amount of repetitive signals which frequencies are 

divisible by ω=314 rad/sω = 314
рад

с⁄ . Taking into consideration the fact 

that the harmonic signal components, which frequencies are higher than 
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harmonic six, effect AM operation nonessentially
7
; hence, it is proposed 

not to involve them for further analysis. 

 

 

Fig. 2. Classification of random processes 

 

The linear voltages, generated in the process of the passive industrial 

implementation experiment, are transient ones. Thus, beforehand each 

implementation was visually divided into steady-flow sections  

(i.e. certain temporal fragments with invariant signal format). Each of the 

fragments was enumerated in the order of time increasing. 

The enumerated random sequences were tested on the steady state of 

the average according to inversion criterion. Taking into consideration 

the fact that the latter is parametric, its application does not involve any 

preliminary determination of distribution laws for random values and 

their parameters. To accept zero hypothesis that there are no average 

drift, it is quite sufficient to use following inequality: 

                                                 
7 Kuznetsov Vitaliy, Tryputen Nikolay, Kuznetsova Yevheniia Evaluating the 

Effect of Electric Power Quality upon the Efficiency of Electric Power 

Consumption, 2019 IEEE 2nd Ukraine Conference on Electrical and Computer 

Engineering (UKRCON), Lviv, Ukraine, 2019, pp. 556-561,  

doi: 10.1109/UKRCON.2019.8879841. 

https://ieeexplore.ieee.org/author/37086544714
https://ieeexplore.ieee.org/author/37087057382
https://ieeexplore.ieee.org/author/37086546889
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0
2

1
[ ] ( )

2

   


                                  (6) 

where   is test statistic; 2

  is statistic dispersion  ; Ξ is critical value 

of a zero hypothesis criterion; υ0 is probability of the assumed zero 

hypothesis, if it is valid (confidence probability). 

 ξ and σξ
2 values are calculated on the formulas: 

4
1 ,

( 1)

 
  

   

I

С С

                                    (7) 

2 2 (2 5)
,

9 ( 1)


   
 

    

С

С С

                                     (8) 

where I  is the total number of inversions; andΩс Ωс is the number of 

averages within the sequence under study. 

The tests results have specified steady-state sections of random 

sequences resulting from the industrial experiment. Amplitudes of 

harmonic components of linear voltages within the steady-state stations 

as well as their phases were considered as invariant ones. 

Generally, analytical expressions of distribution laws to describe the 

linear voltages, being studied, are selected basing upon the problem root. 

Specifically, simultaneous operating electrical facilities effect parameters 

of harmonic components of linear voltages. 

Moreover, effect of each of them is random one. If there are more 

than six simultaneous operating electrical facilities, it is quite proper 

thing to suggest a hypothesis concerning normality of distribution of 

amplitudes and phases of harmonic components in the context of each 

steady-state section of random implementations basing upon central limit 

theorem of probability theory. The hypothesis has been tested according 

to Shapiro-Wilk normality test 
8
. Parameters of distribution laws are 

summarized in Tables 1-3. 

It should be also meant that changes in amplitudes of harmonic 

components of linear voltages as well as in their phases take place at 

random time intervals. Analysis of numerical characteristics of the time 

intervals as well as further tests of several hypotheses concerning 

distribution laws (normal, exponential, and uniform one) according to 

Pearson criterion have demonstrated that their description should accept 

                                                 
8 Кобзарь А.И. Прикладная математическая статистика. 

Москва : Физматлит, 2006. 238 с. 
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a hypothesis on exponential distribution law with 18 cpT  min average 

value and 11 1 / 18


  


ср

мин
T

λ
1

ср

1 1 / 18мин
T


 


 intensity: 

 
1

18
1

18

 

 
T

f T e                                              (9) 

 

Table 1 

Numerical characteristics of harmonics of linear voltage UAB 

Harmonic 
Frequency, 

rad/s 

Amplitude, V Phase, degrees 

Average Dispersion Average Dispersion 

1 314 529.82 19.11 - - 

2 628 4.23 1.42 63 112 

3 942 17.60 9.35 206 68 

4 1256 1.51 0.06 92 85 

5 1570 18.54 8.29 130 214 

6 1884 3.05 0.27 290 152 

 

Table 2 

Numerical characteristics of harmonics of linear voltage UBC 

Harmonic 
Frequency, 

rad/s 

Amplitude, V Phase, degrees 

Average Dispersion Average Dispersion 

1 314 532.09 17.36 - - 

2 628 3.98 1.56 78 102 

3 942 19.13 8.19 235 49 

4 1256 1.55 0.06 111 106 

5 1570 16.77 6.44 114 210 

6 1884 4.15 1.11 325 138 

 

Table 3 

Numerical characteristics of harmonics of linear voltage UCA 

Harmonic 
Frequency, 

rad/s 

Amplitude, V Phase, degrees 

Average Dispersion Average Dispersion 

1 314 530.41 17.28 - - 

2 628 3.71 1.25 94 96 

3 942 18.27 7.14 182 78 

4 1256 1.50 0.06 83 56 

5 1570 16.01 7.66 165 183 

6 1884 3.82 0.53 310 240 

 
To identify correlation ratio between amplitudes (phases) of 

harmonics of linear voltages of the same frequency, both autocorrelation 
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functions and cross-correlation ones were calculated. In this context, 
steady-state section number was taken as actual parameters. That made it 
possible to assess statistic dependence of amplitudes (phases) of 
harmonic components in the process of electric workshop equipment 
switching on/switching off taking place at random time moments. 

Approximation of the calculated curves should be based upon general 
theoretical factors concerning initiation of random processes. If they are 
unknown, attention should be paid to common nature of correlation function, 
and compare them with representative curves. In such cases, certain support 
points are used where experimental values as well as values, calculated on 
approximating value, coincide. Points, within which ordinates of 
experimental curve are equal to zero, are applied as support ones. 

To approximate autocorrelation function of harmonic components, a 
representative curve, being described with the help of following 
analytical expression, has been selected: 

   2 cos ,    j iR i e i                                  (10) 

where j  and   θare the curve coefficients, and is a mean-square 

deviation of a random function. 
Similar expression, where graph shift along abscise axis is m pitches, 

may be used to approximate cross-correlation function: 

   2 cos .     j iR i e i m                             (11) 

j , j , and m coefficients of the considered functions for amplitudes 

and phases of linear voltages of the mentioned workshop are in the 
corresponding Tables 4-11. 

 
Table 4 

Coefficients of analytical curves of autocorrelation functions 
of amplitudes of harmonics of linear voltages 

Harmonic 

Linear voltages 

ABU  BCU  CAU  

J    J    J    

1 0.85 4.1 0.61 2.9 0.5 0.47 

2 1.4 - 0.52 - 0.52 - 

3 0.73 - 0.87 1.3 1.0 - 

4 0.51 3.12 0.61 2.1 0.5 0.47 

5 1.73 - 1.81 - 1.79 - 

6 0.49 1.57 1.11 0.50 0.5 0.47 

Table 5 
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Coefficients of analytical curves of autocorrelation functions 

of phases of harmonics of linear voltages 

Harmonic 

Linear voltages 

ABU  BCU  CAU  

J    J    J    

1 2 3 4 5 6 7 

1 2 3 4 5 6 7 

1 - - - - - - 

2 0.87 5.2 0.72 3.80 0.79 4.30 

3 0.52 - 0.60 - 0.57 1.20 

4 0.61 - 0.56 0.50 0.69 - 

5 1.20 1.10 0.97 1.80 0.83 1.5 

6 0.67 0.8 0.52 0.95 0.49 0.88 

 

Table 6 

Coefficients of analytical curves of cross-correlation functions 

of amplitudes of harmonics of linear voltages 

Harmonic 

Linear voltages 

AB BCU  AB C AU  

J    m     

1 0.51 3.12 3 0.61 2.9 3 

2 1.73 - 2 0.52 - 3 

3 0.49 1.57 2 0.87 1.3 1 

4 0.52 - 1 0.5 0.47 2 

5 1.0 - 2 0.52 - 2 

6 0.5 0.47 1 0.87 1.3 2 

 

Table 7 

Coefficients of analytical curves of cross-correlation functions 

of amplitudes of harmonics of linear voltages 

Harmonic 

Linear voltages 

BC ABU   BC CAU   

j    m j    m 

1 0.87 1.3 3 0.52 - 2 

2 0.61 2.1 3 1.0 - 2 

3 1.81 - 2 0.85 4.1 3 

4 0.87 1.3 1 1.4 - 1 

5 0.61 2.1 2 0.87 1.3 1 

6 0.5 0.47 3 0.61 2.1 2 

 

Table 8 
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Coefficients of analytical curves of cross-correlation functions 

of amplitudes of harmonics of linear voltages 

Harmonic 

Linear voltages 

CA ABU  CA BCU  
j    m j    m 

1 0.52 - 2 1.4 - 2 

2 0.61 2.1 2 0.73 - 3 

3 1.81 - 3 1.79 - 3 

4 1.0 - 1 1.73 - 2 

5 0.87 1.3 3 0.61 2.1 2 

6 0.51 3.12 3 0.49 1.57 3 

 

Table 9 

Coefficients of analytical curves of cross-correlation functions 

of phases of harmonics of linear voltages 

Harmonic 

Linear voltages 

AB BCU  AB C AU  
j   m j   m 

1 0.56 0.50 1 0.50 0.69 2 

2 0.97 1.80 3 0.52 - 2 

3 0.87 5.2 3 0.61 - 2 

4 0.83 1.5 2 0.60 - 1 

5 0.49 0.88 1 0.56 0.50 1 

6 1.20 1.10 1 0.67 0.8 1 

 

Table 10 

Coefficients of analytical curves of cross-correlation functions 

of phases of harmonics of linear voltages 

Harmonic 

Linear voltages 

BC ABU  BC CAU  
j   m j   m 

1 0.69 - 2 0.60 - 2 

2 0.83 1.5 2 0.79 4.30 2 

3 0.49 0.88 3 0.57 1.20 1 

4 0.56 0.50 1 0.87 5.2 1 

5 0,97 1.80 2 0.52 - 2 

6 0.52 0.95 2 0.52 0.95 3 

 
 

Table 11 
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Coefficients of analytical curves of cross-correlation functions 

of phases of harmonics of linear voltages 

Harmonic 

Linear voltages 

CA ABU  CA BCU  
j   m j   m 

1 1.20 1.10 2 0.87 5.2 3 

2 0.67 0.8 3 0.52 - 3 

3 0.60 - 1 0.97 1.80 2 

4 0.56 0.50 2 0.52 0.95 1 

5 0.79 4.30 2 0.61 - 3 

6 0,57 1.20 3 0.56 0.50 2 

 

3. Digital implementation of statistical models of the electrical 

system of the production structure of an industrial enterprise 

While implementing voltage generators within power grid, it is 

required to have signals with standard distribution laws to simulate 

amplitudes and phases of their harmonic components as well as 

exponential law for time intervals between electric equipment switching 

on/switching off. Currently, almost each application program package 

(for instance, MatLAB), intended to solve such problems, has built-in 

functions helping model random values including those with standard 

law. As for the exponential law, it is more expedient to use a method of 

inverse functions. 

Idea of the method is as follows
9
. Mathematical ratio is known; it 

connects random numbers iy with the prescribed distribution law  f y , 

and ix number distributed uniformly within [0; 1] interval
10

: 

  .


 
y

x f y dy                                        (12) 

If there is integral in a right side, then: 

 .x F y                                            (13) 

                                                 
9
 Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical 

Learning: Data Mining, Inference, and Prediction, Second Edition. 745 p., 

Springer Science+Business Media, Ney York, USA (2017).  
10

 Гмурман В.Е. Руководство к решению задач по теории 

вероятности и математической статистике: Учеб. пособие для 

студентов вузов. Москва : Высш. шк., 2004. 404 с. 
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Further, inverse function  1F x  is being determined to identify 

dependence according to which the numbers are generated: 

 1y F x                                                   (14) 

Numbers, distributed uniformly within [0;1] interval, are connected 

with exponential law with the help of following mathematical 

expression: 
1

18

0

1
.

18

 

 
y

T

x e dy                                           (15) 

Determine integral in a right side: 
1 1 1

18 18 18
0

0

1
| 1

18

     

     
y

T T T
yx e dy e e                   (16) 

as well as inverse function: 

 18 ln 1 .    T x                                   (17) 

Uncorrelated random values are transformed into a sequence with the 

prescribed autocorrelation function and cross-correlation one using 

moving average method; it is based upon the use of the dependence
11

: 

   ,



  jj

X l S I i j                               (18) 

where X(l) is a running l value of a centered random variable; jS  are real 

numbers or complex numbers; and I is a unit random sequence. 

In this context, autocorrelation function R(i) can be determined as 

follows: 

  .



  j i jj

R i S S                                      (19) 

If R(i) is attenuating, (18 and 19) ratios are: 

   3

0
,




   jj

X l S I l j                                     (20) 

3

30

3

,
( ) ,

0,

 



   
 

 


i

jj ij
S S when i

R i
when i

                        (21) 

where ηз is attenuating interval of cross-correlation function of a random 

process. 

In practice, ηзvalue is selected in such a way to fulfill the inequality: 

                                                 
11

 A. Papoulis and S.U. Pillai, Probability, Random Variables and 

Stochastic Processes. New York : McGraw-Hill, 2001. 
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3( ) 0.05 (0). R R                                          (22) 

Determination of jS Sjcoefficients is to solve (21) when i  is varying 

from 0 to 3 , i.e. to solve a set of the equations: 

 

 

 

 

3

3 3

3 3

3

2 2 2

0 1

1 0 2 1 1

3 1 0 1

3 0

0

1

.

1



  

  



       


      


  


   

  

R S S S

R S S S S S S

R S S S S

R S S

                    (23) 

The last equation has been implemented in an application program 

package MathCAD. 

( )R i values for workshop grid of Dneprospetsstal PJSC have been 

determined according to analytical expressions of corresponding 

autocorrelation functions; in this context, Tables 12-22 explain values of 

the related coefficients to simulate amplitudes of harmonic components, 

and their phases. 

 

Table 12 

Coefficients to simulate amplitudes 

of linear voltages of harmonic one 
 UAB UBC UCA UAB/BC UAB/CA UBC/AB UBC/CA UCA/AB UCA/BC 

So 0.95 3.537 0.634 0.93 -0.197 0.362 0.195 0.387 -0.051 

S1 1.91 -1.909 1.177 -0.53 -0.713 0.077 0.311 0.637 -0.006 

S2 1.83 0.969 1.939 2.84 2.571 2.458 -0.01 -0.002 0.049 

S3 -2.99 -0.458 2.447 2.72 1.015 0.98 -0.312 -0.637 0.166 

S4 1.52 0.43 1.804 1.03 - - 0.194 0.386 0.361 

S5 - - -1.577 - - - 0.195 0.387 -0.051 

 

Table 13 

Coefficients to simulate amplitudes 

of linear voltages of harmonic two 
 UAB UBC UCA UAB/BC UAB/CA UBC/AB UBC/CA UCA/AB UCA/BC 

So 0.07 0.389 0.694 -0.051 -0.197 0.362 0.07 -0.022 0.93 

S1 0.02 -0.189 -0.166 -0.006 -0.713 0.077 0.03 -0.092 -0.53 

S2 1.16 0.446 0.151 0.049 2.571 2.458 0.06 0.074 2.84 

S3 028 0.816 0.218 0.166 1.015 0.98 -0.15 0.079 2.72 

S4 - 0.647 0.546 0.361 - - 0.15 0.116 1.03 

S5 - 0.298 1.339 0.606 - - -0.08 0.18 - 
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Table 14 

Coefficients to simulate phases of linear voltages of harmonic two 
 UAB UBC UCA UAB/BC UAB/CA UBC/AB UBC/CA UCA/AB UCA/BC 

So -0.79 2.21 1.88 -0.79 2.21 1.88 7.72 -2.69 6.47 

S1 -0.89 -5.51 -5.61 -0.89 -5.51 -5.61 4.21 6.56 3.25 

S2 2.27 7.90 6.37 2.27 7.90 6.37 2.92 6.22 1.63 

S3 10.26 2.10 4.52 10.26 2.10 4.52 1.24 3.74 0.83 

S4 - - - - - - 0.96 1.75 0.54 

S5 - -  - -  - -0.5 - 

 

Table 15 

Coefficients to simulate amplitudes 

of linear voltages of harmonic three 
 UAB UBC UCA UAB/BC UAB/CA UBC/AB UBC/CA UCA/AB UCA/BC 

So 0.93 -0.197 0.362 0.362 0.195 0.07 -0.022 0.07 -0.197 

S1 -0.53 -0.713 0.077 0.077 0.311 0.03 -0.092 0.03 -0.713 

S2 2.84 2.571 2.458 2.458 -0.01 0.06 0.074 0.06 2.571 

S3 2.72 1.015 0.98 0.98 -0.312 -0.15 0.079 -0.15 1.015 

S4 1.03 - - - 0.194 0.15 0.116 0.15 - 

S5 - - - - 0.195 -0.08 0.18 -0.08 - 

 

Table 16 

Coefficients to simulate phases of linear voltages of harmonic three 
 UAB UBC UCA UAB/BC UAB/CA UBC/AB UBC/CA UCA/AB UCA/BC 

So 6.63 3.57 1.45 2.01 3.61 3.61 14.29 7.72 -2.69 

S1 3.92 5.63 -1.76 5.14 7.25 7.25 -1.46 4.21 6.56 

S2 2.34 0.86 -4.39 7.07 9.09 9.09 -1.90 2.92 6.22 

S3 1.40 1.84 5.27 3.45 4.03 4.03 - 1.24 3.74 

S4 0.83 0.17 4.12 -6.76 -8.69 -8.69 - 0.96 1.75 

S5 0.77 0.67 2.98 - - - - - -0.5 

 

Table 17 

Coefficients to simulate amplitudes 

of linear voltages of harmonic four 
 UAB UBC UCA UAB/BC UAB/CA UBC/AB UBC/CA UCA/AB UCA/BC 

So 0.195 0.07 -0.022 0.07 -0.022 0.694 -0.051 0.387 -0.051 

S1 0.311 0.03 -0.092 0.03 -0.092 -0.166 -0.006 0.637 -0.006 

S2 -0.01 0.06 0.074 0.06 0.074 0.151 0.049 -0.002 0.049 

S3 -0.312 -0.15 0.079 -0.15 0.079 0.218 0.166 -0.637 0.166 

S4 0.194 0.15 0.116 0.15 0.116 0.546 0.361 0.386 0.361 

S5 0.195 -0.08 0.18 -0.08 0.18 1.339 0.606 0.387 -0.051 
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Table 18 

Coefficients to simulate phases of linear voltages of harmonic four 
 UAB UBC UCA UAB/BC UAB/CA UBC/AB UBC/CA UCA/AB UCA/BC 

So 7.72 -2.69 6.47 13.27 3.57 14.29 7.72 14.29 6.30 

S1 4.21 6.56 3.25 0.53 5.63 -1.46 4.21 -1.46 10.41 

S2 2.92 6.22 1.63 -2.60 0.86 -1.90 2.92 -1.90 -1.03 

S3 1.24 3.74 0.83 - 1.84 - 1.24 - 0.35 

S4 0.96 1.75 0.54 - 0.17 - 0.96 - -1.66 

S5 - - - - 0.67 - - - - 

 

Table 19 

Coefficients to simulate amplitudes 

of linear voltages of harmonic five 
 UAB UBC UCA UAB/BC UAB/CA UBC/AB UBC/CA UCA/AB UCA/BC 

So 2.83 2.50 2.728 2.456 2.673 13.234 0.195 0.387 -0.051 

S1 0.52 0.42 0.469 -0.051 -0.197 0.362 0.311 0.637 -0.006 

S2 - - - -0.006 -0.713 0.077 -0.01 -0.002 0.049 

S3 2 3 4 5 6 7 8 9 10 

S4 - - - 0.049 2.571 2.458 -0.312 -0.637 0.166 

S5 - - - 0.166 1.015 0.98 0.194 0.386 0.361 

 

Table 20 

Coefficients to simulate phases of linear voltages of harmonic five 
 UAB UBC UCA UAB/BC UAB/CA UBC/AB UBC/CA UCA/AB UCA/BC 

So -0.79 14.29 13.27 1.88 -0.79 2.21 1.88 3.61 6.47 

S1 2.14 -1.46 0.53 -5.61 -0.89 -5.51 -5.61 7.25 3.25 

S2 14.45 -1.90 -2.60 6.37 2.27 7.90 6.37 9.09 1.63 

S3 - - - 4.52 10.26 2.10 4.52 4.03 0.83 

S4 - - - - - - - -8.69 0.54 

S5 - - -  - 2.21 1.88 - - 

 

Table 21 

Coefficients to simulate amplitudes of linear voltages of harmonic six 
 UAB UBC UCA UAB/BC UAB/CA UBC/AB UBC/CA UCA/AB UCA/BC 

So 0.195 0.387 -0.051 0.195 0.07 -0.022 0.93 0.95 3.537 

S1 0.311 0.637 -0.006 0.311 0.03 -0.092 -0.53 1.91 -1.909 

S2 -0.01 -0.002 0.049 -0.01 0.06 0.074 2.84 1.83 0.969 

S3 -0.312 -0.637 0.166 -0.312 -0.15 0.079 2.72 -2.99 -0.458 

S4 0.194 0.386 0.361 0.194 0.15 0.116 1.03 1.52 0.243 

S5 0.001 0.001 0.606 0.195 -0.08 0.18 - - - 
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Table 22 

Coefficients to simulate phases of linear voltages of harmonic six 
 UAB UBC UCA UAB/BC UAB/CA UBC/AB UBC/CA UCA/AB UCA/BC 

So 6.30 2.01 3.61 2.21 1.88 2.21 -0.022 0.07 -2.69 

S1 10.41 5.14 7.25 -5.51 -5.61 -5.51 -0.092 0.03 6.56 

S2 -1.03 7.07 9.09 7.0 6.37 7.90 0.074 0.06 6.22 

S3 0.35 3.45 4.03 2.10 4.52 2.10 0.079 -0.15 3.74 

S4 -1.66 -6.76 -8.69 - - - 0.116 0.15 1.75 

S5 - - - -  2.21 0.18 -0.08 -0.5 

 

Fig. 3 demonstrates enlarged algorithm to simulate sequences of 

linear voltages with the prescribed statistical regularities. 

 

 

Fig. 3. Algorithm to simulate                         Fig. 4. Randomization 

linear voltages                                               algorithm 

 

Unit 1 loads modeling timeT, and array S⃗  used to transform 

uncorrelated random sequences, distributed according to a standard law 

with zero mathematical expectation as well as with the preset dispersion, 

into the correlated ones. Unit 2 prepares k  variable for further 

accumulation of intervals of steady-state sections; unit 3 generates 

uncorrelated random sequences. Unit 4 calculates duration of the current 

steady-state modeling interval of random values. Unit 5 calculates total 

duration value of the steady-state sections. 
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As it has been stated below, decrease in systematic modeling error of 

linear voltages is possible owing to randomly selected sequence 

(i.e. randomization) while generating amplitudes and harmonic phases. 

Unit 6 performs the procedure. Then, parameter values of linear voltage 

harmonic are calculated (Units 7 and 8). The obtained values help 

determine instaneous harmonic values (Unit 10) as well as linear 

voltages properly (Unit 11). Unit 12 storages them. 

Consequently, duration of the current total modeling period is 

checked (Unit 13). If it is less than the prescribed T then the considered 

procedure, corresponding to the algorithm, recurs. Otherwise, simulation 

of random sequences of linear voltages terminates. 

Fig. 4 explains randomization algorithm, implemented by Unit 6. Its 

idea is as follows. As it has been mentioned above, determination of 

amplitudes, and harmonic phases of linear voltages within steady-state 

sections may involve one of the calculation techniques: either relying upon 

the prescribed autocorrelation functions (i.e. moving-average method) or 

upon cross-correlation functions (i.e. moving-average retarded method), or 

upon the known electrotechnical ratios between instaneous values of linear 

voltages (formulas 2; 10; and 11). Table 23 shows all possible 

combinations of sequences to calculate linear voltages. 

 

Table 23 

Determination of a technique to simulate harmonics 

of linear voltages 

 Random value d 

Calculation on 

autocorrelation 

function 

Calculation of 

cross-correlation 

function 

Calculation 

on formula 

(2) 

1 0 1 6 d  
ABU

 BCU
 CAU

 

2 1 6 2 6 d  ABU
 CAU

 BCU
 

3 2 6 3 6 d  
BCU

 ABU
 CAU

 

4 3 6 4 6 d  BCU
 CAU

 ABU
 

5 4 6 5 6 d  CAU
 ABU

 BCU
 

6 5 6 1 d  CAU
 BCU

 ABU
 

 

Separate regular numeric intervals for each of them within[0; 1]. 
Then, while producing sequence of potential values of random variable d 

(Unit 1) distributed uniformly within [0; 1] interval, it is possible to 

select one of the sequences randomly (Units 2 and 3). It follows from 
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probability theory and from mathematical statistics that selection 

frequencies will be identical, if tests are numerous. 

4. Estimation of means and variances of random sequences 

of simulated parameters of the electrical system 

of the production structure of an industrial enterprise 

While synthesizing digital linear voltage generators within workshop 

power grids, the techniques, providing computer modeling of random 

sequences with the prescribed statistic characteristics, were applied. 

Hence, it is necessary for average values and dispersions of the generated 

samples to differ insignificantly from the obtained hypothetical average 

values and dispersions (Tables 1-3). If so, then the computational results 

may help make correct engineering decisions to provide the required 

conditions for asynchronous motor functioning. If significance value  is 

prescribed, then to check zero hypothesis 2 2

0 0:   H  on the equality 

of the unknown general dispersion 2  to hypothetic value 2

0 in the 

context of competing hypothesis 2 2

1 0:   H  it is required to calculate 

the experimental criterion
12

: 

  2

2

exp 2

0

n-1
, 


erimental

s
                                        (24) 

where s2is unbiased dispersion estimator. 

Further, it is necessary to determine left critical 

pointχ
левуюкр.(1-α 2⁄ ;k)
2 , and right one χправуюкр.(α 2⁄ ;k)

2 (k = n-1–number of 

degrees of freedom). If
2 2 2

. .(1 /2;k) exp. . .( /2;k)     l cr r cr χ
л.кр.(1-α 2⁄ ;k)
2 <

χнабл
2 < χп.кр.(α 2⁄ ;k)

2 , then zero hypothesis is accepted. In the context of 

n = 30 andα = 0,05, both left and right critical points are equal to 

 
2

. . 1 /2;
16


 
л кр k

χ
л.кр.(1-α 2⁄ ;k)
2 = 16 and  

2

. . /2;
42,6


 
п кр k

χп.кр.(α 2⁄ ;k)
2 =

42,6respectively. Tables 24-26 represent results concerning verification 

of dispersions of random sequences of linear voltage harmonics 

generated with the help of the developed digital generators. 

If significance value  is prescribed, then to check zero hypothesis

0 0: H a a  on the equality of the general average normal collection a  

                                                 
12

 Kendall, M., Gibbons, J.: Rank Correlation Methods. 260 pp. 5th edn., 

Edward Arnold, London, (1990). 
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with the known 2

0 dispersion to hypothetic value in the context of 

competing hypothesis 1` 0: H a a  it is required to calculate the 

experimental criterion
13

: 

0

exper

( )
U .






y a n
                                        (25) 

Then, Laplace function table is applied to find critical point cru uкр of 

two-sided critical region using the equality: 

сr
(u ) (1 ) / 2.  Ф                                               (26) 

If 
expU er cru , it is no necessity to reject zero hypothesis. 

Determine
cr

(u ) (1 ) / 2 0.475   Ф for 0.05 

   αкр
Ф u 1 / 2 0,475   Ф(uкр) = (1-α) 2⁄ = 0,475. Laplace 

function table helps identify cru 1.96 . 

 

Table 24 

Control results of dispersions of linear voltage UAB. 

Harmonic 

Amplitude,V Phase, degrees 

Dispersion 
2

0
 

Dispersion 
2s  

2

exper
 

Dispersion 
2

0
 

Dispersion 
2s  

2

exper
 

1 19.11 21.19 32.16 - - - 

2 1.42 1.24 25.34 112 70.06 18.14 

3 9.35 6.41 19.87 68 62.16 26.51 

4 0.06 0.04 21.19 85 68.06 23.22 

5 8.29 11.35 39.72 214 276.06 37.41 

6 0.27 0.31 33.07 152 180.51 34.44 

 

Table 25 

Control results of dispersions of linear voltage UBC. 

Harmonic 

Amplitude,V Phase, degrees 

Dispersion 
2

0
 

Dispersion 
2s  

2

exper
 

Dispersion 
2

0
 

Dispersion 
2s  

2

exper
 

1 17.36 11.87 19.83 - - - 

2 1.56 1.02 18.92 102 96.20 27.35 

3 8.19 8.83 31.27 49 40.82 24.16 

4 0.06 0.05 22.88 106 137.99 37.75 

5 6.44 5.59 25.17 210 191.97 26.51 

                                                 
13 Bonett, Douglas G.; Wright, Thomas A. (2000). Sample size requirements for 

estimating Pearson, Kendall, and Spearman correlations. Psychometrika. 65 (1): 23–28. 

https://en.wikipedia.org/wiki/Psychometrika
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6 1.11 0.82 21.45 138 144.00 30.47 

 

Table 26 

Control results of dispersions of linear voltage UCA 

Harmonic 

Amplitude,V Phase, degrees 

Dispersion 
2

0
 

Dispersion 
2s  

2

exper
 

Dispersion 
2

0
 

Dispersion 
2s  

2

exper
 

1 17.28 1.59 21.13 - - - 

2 1.25 1.75 40.52 96 87.66 26.48 

3 7.14 9.38 38.10 78 97.23 36.15 

4 0.06 0.04 17.06 56 66.86 34.62 

5 7.66 6.59 24.93 183 250.90 39.76 

6 0.53 0.36 19.67 240 338.90 40.95 

 
Tables 27-29 demonstrate control results of average random 

sequences of linear voltage harmonics generated with the help of digital 
generators(n 30) . 

 

Table 27 

Control results of average harmonics of linear voltage UAB 

Harmonic 

Amplitude,V Phase, degrees 

Average 

0
a  

Average 

y
 

expU er
 

Average 

0a
 

Average 

y
 

expU er
 

1 529.82 531.26 |1.8| - - - 

2 4.23 4.38 |0.7| 63 59.95 |-1.58| 

3 17.60 16.85 |-1.35| 206 208.01 |1.34| 

4 1.51 1.58 |1.63| 92 94.88 |1.71| 

5 18.54 17.75 |-1.51| 130 134.99 |1.87| 

6 3.05 2.95 |-1.02| 290 286.24 |-1.67| 

 

Table 28 

Control results of average harmonics of linear voltage UBC 

Harmonic 

Amplitude,V Phase, degrees 
Average 

0
a  

Average 

y  exp
U

er
 

Average 

0
a  

Average 

y  exp
U

er
 

1 532.09 533.38 |1.70| - - - 
2 3.98 4.41 |1.88| 78 74.63 |-1.83| 
3 19.13 18.38 |-1.44| 235 236.7 |1.33| 
4 1.55 1.64 |1.92| 111 114.27 |1.74| 
5 16.77 17.35 |1.25| 114 109.11 |-1.85| 
6 4.15 4.33 |0.94| 325 327.08 |0.97| 
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Table 29 

Control results of average harmonics of linear voltage UCA 

Harmonic 

Amplitude,V Phase, degrees 

Average 

0
a  

Average 

y  exp
U

er
 

Average 

0
a  

Average 

y  exp
U

er
 

1 530.41 531.85 |1.90| - - - 

2 3.71 4.07 |1.78| 94 91.23 |-1.55| 

3 18.27 19.09 |1.69| 182 182.31 |0.19| 

4 1.50 1.57 |1.63| 83 85.42 |1.77| 

5 16.01 16.56 |1.08| 165 169.22 |1.71| 

6 3.82 3.57 |-1.88| 310 315.346 |1.89| 

 

Most of all, the hypothesis, concerning random sampling belonging to 

the prescribed distribution law, is implemented according to 2 (i.e. chi-

square) Pearson criterion. Idea of the criterion is as follows. Minimum 

minY value as well as maximum maxY value of random value is determined 

(i.e. the sample range). 

The whole  min max,Y Y  range is divided into intervals which number is 

identified according to formula
14

: 

5lg ,m n                                               (27) 

where n is the sample size. 

Then, empiric ih  as well as theoretical  
max

min,

 
i

i

Y

i
Y

np n f y dy  

frequencies is calculated for each  min max,i iY Y interval; further, the 

criterion value is rated  
Yimax

i

Yimin,

np n f y dy  npi = n∫ f(y)dy
Yimax

Yimin,
: 

 
2

2

1

.



 

m
i i

i i

h np

np
                                       (28) 

Calculations on formula (28) are correct if the theoretical frequencies 

meet 5inp inequality requirements. If the inequality requirements 

cannot be met for certain intervals, they are united with neighbouring 

ones. The suggested hypothesis concerning random sampling belonging 

to the prescribed distribution law is accepted for the selected probability 

of a type 1 error   in the process of engineering problem solving  

                                                 
14 Borky , J., Bradley, Th.: Effective Model-Based Systems Engineering. 1st ed. 

779 p. Springer International Publishing AG. Cham, Switzerland (2019). 

https://www.bookdepository.com/author/John-M-Borky
https://www.bookdepository.com/author/Thomas-H-Bradley
https://www.bookdepository.com/author/Thomas-H-Bradley
https://www.bookdepository.com/publishers/Springer-International-Publishing-AG
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(  significance level is taken as 0.05) if the calculated 2  χ2 χ2 value is 

not more than reference value 
,

2




k
χ2α,k. In this context, k k is the 

number of degrees of freedom: 

3. k m                                                 (29) 

Tables 30-31 demonstrate check results concerning distribution of 

random sequences of harmonics of linear voltages produced by digital 

generators for 30n n = 30 and 0.05  α 0,05 α = 0,05sampling. 

 

Table 30 

Check results concerning amplitude distribution laws 

Harmonic 
Linear voltage UAB Linear voltage UBC Linear voltage UCA 

2

  k  
2

,k
  2

  k  
2

,k
  2

  k  
2

,k
  

1 8.9 4 9.5 7.6 3 7.8 7.3 3 7.8 

2 8.3 4 9.5 9.1 4 9.5 5.5 2 6.0 

3 6.5 3 7.8 7.5 3 7.8 9.0 4 9.5 

4 5.7 2 6.0 7.2 3 7.8 7.1 3 7.8 

5 7.0 3 7.8 5.9 2 6.0 7.7 3 7.8 

6 7.4 3 7.8 6.8 3 7.8 5.4 2 6.0 

 

Table 31 

Check results concerning phase distribution laws. 

Harmonic 
Linear voltage UAB Linear voltage UBC Linear voltage UCA 

2

  k  
2

,k
  2

  k  
2

,k
  2

  k  
2

,k
  

1 7.5 3 7.8 7.7 3 7.8 7.6 3 7.8 

2 7.6 3 7.8 7.6 3 7.8 5.7 2 6.0 

3 5.9 2 6.0 9.3 4 9.5 5.8 2 6.0 

4 7.6 3 7.8 5.4 2 6.0 7.4 3 7.8 

5 5.8 2 6.0 7.5 3 7.8 8.8 4 9.5 

6 5.9 2 6.0 7.5 3 7.8 5.9 2 6.0 

 

As it follows from Tables 24-31, numerical characteristics of 

harmonics of linear voltages, being generated for rolling plant 1 of 

Dneprospetsstal OJSC (Zaporozhie) differ insignificantly from 

hypothetic ones; thus, the digital model, set for the considered 

conditions, can be regarded as adequate one. 

 

CONCLUSIONS 

It is practical to carry out studies, concerning electric equipment 

efficiency within power grids with noisy electricity, basing upon 
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computational experiments with the use of linear voltage generators 

developed on the basis of a method of statistical tests. 

Since all harmonic components of linear voltages within power grids 

with noisy electricity have fixed oscillation frequencies, on which 

changes in amplitudes and initial phases are just superimposed, their 

modeling by means of statistical methods is expedient while generating 

random sequences of the latter. 

Availability of large intervals between random switching on/switching 

off of electrical equipment within power grids results in nonstationarity of 

linear voltages which involves separation of stationary sections. 

While using switching on/switching off of equipment, event numbers 

as an argument of random functions of linear voltages, studies of 

statistical regularities of linear voltages within workshop power grid can 

be carried out as part of correlation analysis. 

Randomization of computational sequences of harmonics of linear 

voltages helps decrease systematic modeling error. 

Use of the developed probability model of a workshop power grid 

with noisy electrical energy helps making correct engineering solutions 

to provide the prescribed functioning conditions for asynchronous 

motors basing upon computational studies. 

 

SUMMARY 

The мonograph section is proposes the generator of random voltage 

changes in electrical networks of enterprises that implements the 

relationship of the energy – economic model of an asynchronous motor 

with the external environment. When reproducing voltages on a computer, 

the amplitudes and phases of significant harmonics, their distribution laws, 

autocorrelation and cross-correlation functions are taken into account. The 

formation of voltages from individual harmonics is shown. The statistical 

regularities of harmonics are obtained as a result of processing the changes 

in voltages obtained during passive industrial experiments for the 

conditions of Dneprospetsstal LLC. Analytical expressions for the 

autocorrelation and cross-correlation functions of harmonics are obtained 

from individual reference points at which the experimental values and the 

values calculated from the approximating expression coincide. To 

implement the obtained static laws on a computer, their digital models and 

a modeling algorithm have been developed. The simulation results are 

checked for adequacy to the real process. 
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