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INTRODUCTION 
Many problems of mechanics are considered in a variational 

formulation and for their study the apparatus and methods of functional 
analysis are used in appropriately selected functional spaces. This 
approach allows us to identify common patterns inherent in wide classes 
of extremal problems, to create and explore general methods for solving 
them. Note that for most variational problems in the mechanics of a 
deformable solid, the use of the quadratic functional of potential energy 
is characteristic. 

The local variations method (LVM), developed by F.L Chernousko and 
his coauthors [7], refers to effective numerical methods for solving 
variational problems. This method is a variant of the methods of variations in 
the phase space developed in the works of N. N. Moiseev, which are based 
on a change in the phase components of the trajectory [7]. 

The LVM has a number of advantages compared to other numerical 
methods. It makes it easy to take into account restrictions on the desired 
functions, the arbitraries of the shape of the region, and other features. In 
mechanics of a deformable solid, the LVM is effective for substantially 
inhomogeneous stressed states. This method allows one to consider 
different types of loading of thin-walled systems and boundary 
conditions, the different structure of such systems (for shells and plates – 
variability of rigidity, cuts). It should be noted, however, that when 
solving certain classes of problems, for example, variational, which 
reduce to linear boundary-value problems, the LVM requires more 
calculation time to achieve a given accuracy than finite-difference 
methods and variational methods of the Ritz type. The search for ways to 
eliminate this drawback led to the idea of developing more effective 
schemes for its implementation based on the ideology of projection-



51 

iterative methods [3, 12], which can significantly reduce the computer 
calculation time. 

The effectiveness of projection-iterative schemes for implementing 
the finite difference method and finite element method for solving a wide 
range of problems in the theory of elasticity and plasticity was shown in 
[8, 9]. The development of a projection-iterative modification of yet 
another numerical method for solving variational problems – LVM, is of 
undoubted interest. We point out that the issues of reducing the machine 
time for the LVM account were given attention earlier [5]. 

 
The main provisions of the projection-iterative LVM-modification 

Consider the problem of finding in a domain with a boundary a 
function delivering a minimum to the quadratic functional 
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and satisfying the boundary condition 

 
( , ), ( , ) . u g x y x y                                   (2) 

 
Here ( , ), ( , ), ( , ), ( , ), ( , )S x y Q x y R x y T x y g x y  are the given 

continuously differentiable functions of independent variables. 
To solve the problem (1), (2) we apply the projection-iterative 

modification of the local variations method. To do this, we write the 
original problem in the form: 

 
( ) inf, F u u ,                                (3) 

 
where   is some set of real Hilbert space H ; ( )F u  – bounded below by 
  the functional ( *inf ( )


  

u
F u F ). In particular, 

2( ) H L ;   is 

the set of functions from 
2( )L  satisfying the boundary conditions (2). 

Let us state the main idea of the projection-iterative modification of 
the LVM given in [1, 2, 10]. The initial functional ( )F u  defined on some 
set   of Hilbert space H  is approximated by a sequence of simpler 
functionals ( )n nF u  defined on some sets n  of spaces nH  isomorphic to 
subspaces nH  of the original space H  ( 1 , n n nu u  ,n nu H  n nu H , 
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n  is an operator that performs a one-to-one correspondence between 
elements of subspaces nH  and nH ). To minimize the obtained 
sequence of functionals ( )n nF u , the LVM is applied in such a way that, 
starting from a certain number n N  (corresponding to a rough partition 
of the domain G ), a sufficiently small number nh , and some initial 
approximation ( )

, 1 2( 0, 0, , 0, )  k

n iju k i N j N , the values ( )

,

k

n iju  at all 
internal points ( , )i jx y  of the domain G  are varied sequentially in some 
order by adding or subtracting the value nh . The variation does not 
continue until complete convergence (i.e., when further fragmentation of 
the step nh  does not reduce the value of the functional), but until the 
functional is almost reduced and the solution ( )

, ( 0,1,..., )k

n ij nu k k  

changes in a small number of points, i.e. ( ) ( 1)( ) ( )  k k

n ij n ij nF u F u , 
( ) ( 1)

, , )  k k

n ij n ij nu u , with the exception of ( , ) ni j I , where nI is a fixed set 
of power indices << 1 2( 1) ( 1)  N N . Further, the found value ( )

,

k

n iju  is 
interpolated into a smaller partition and is used as an initial 
approximation to minimize the following functional 1 1( ) n nF u . The 
process continues until the iterations completely converge at some small 
step nh  and the condition 

 
1( ) ( )

1 1( ) ( )

   n nk k

n n n nF u F u ,                               (4) 
 
where   is the specified accuracy of the calculations. 

 
Application of the projection-iterative LVM-modification 

to the solution of the variational problem with quadratic functional 
As in [7], we divide the plane Oxy  into equal rectangular cells with 

parallel lines 0 ,   nx x i x  0   ny y j y . Here 0, 0   n nx y  are 
fairly small numbers, , 0, 1, 2,...  i j ; n  is a certain natural number 
corresponding to the step number of the process of partitioning the 
region G . We choose the  points 0 0,x y  and the natural numbers 

( ) ( )

1 2,n nN N  so that for given values , n nx y  the region  G  is 
contained in a rectangle G : 
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Denote by ijP  the intersection points of lines (cell vertices) with 

coordinates ( ) ( )

0 0 1 2, ( 0, ; 0, )       n n

i n j nx x i x y y j y i N j N . We 
will consider a point ijP  to be internal if it, together with the four cells 
whose vertex it is, lies in a closed region  G . The remaining points ijP  
lying in the region  G  will be considered boundary, and the points 
outside the region  G – external. Put  , ,n ij i ju u x y . We transfer 
condition (2) from the contour   to the boundary points, assuming for 
them  , ,  n ij i ju g , where  , i j  is the  -contour point, in a sense 
close to  ,i jx y . For example, you can take, as  , i j  the contour point 
closest  to the point  ,i jx y  or define it by the drift condition along one 
of the coordinate axes:  i ix  or  j jy . 

The integral (2) is approximately replaced by the sum of the integrals 
over the cells entirely belonging to the domain  G : 

 
, n n ij

ij

F F F ,                                      (5) 

 
where ,n ijF  is the approximate value of the integral over the cell with the 
vertices ijP , 1,i jP , , 1i jP , 1, 1 i jP ; the index n  indicates the 
correspondence of the obtained domain G  discretization expression with 
steps ,    n nx x y y . 

We will search for values iju  for all internal points ijP  of the region 
G  that deliver a minimum to expression (5). Thus, from the original 
problem (1), (2) we proceed to the sequence of tasks of minimizing the 
function of many variables 

 
( ) inf,  n n n n nF u u H ,                            (6) 
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where    n n n , n  is the linear operator of one-to-one 
correspondence between spaces nH  and nH  ( 1,    n n n n n nu u u u );  

nH  is a subspace isomorphic . Suppose that a sequence of subspaces  is 
extremely dense in , i.e. 

 
  : 0 при         n n nu H u H u u n  . 

 
Starting with some sufficiently coarse partition corresponding to a 

certain number , we will look for values  that minimize the sum (1) using 
the method of successive approximations. As a zeroth approximation , 
we take any set of numbers satisfying the constraints (2). A good choice 
of the zeroth approximation can significantly accelerate the convergence 
of the method, therefore, here we should take into account the available a 
priori information on the proposed solution (qualitative, physical, and 
other considerations). 

 
The convergence theorem 

We formulate a convergence theorem for the proposed modification. 
Theorem. Let a functional ( )F u  of the form (1), bounded below, be 

given on the set   of a real Hilbert space H . Suppose that a sequence 
of subspaces 

nH  is extremely dense in H . The sequence of 
approximations  ( )1 nk

n nu  to the minimum point of functional (1) is 
constructed according to the rule: 

 
 ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

,11 ,12 ,21,1 ,
, , , ,...,     k k k k k k

n n n nn l n mlu u u u u u ,                   (7) 

 
where ( 1)

,

k

n iju  ( 1, , 1, i m j l ;  0,1,..., 1 nk k ) are determined from 
condition (4); 

nk  is the number of iterations to approach the minimum 
point of the functional ( )n nF u ; (0)

1nu  is a new initial approximation to the 
minimum point of the functional 1 1( ) n nF u  obtained by interpolation: 
 

( )(0) 1
1 1


 
  nk

n nn nu u                                         (8) 
( 0,1,..., 1 nk k ; 1,2,...;n  (0)

1 1u ). 
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Then the projection-iterative sequence  ( )1 nk

n nu  constructed by 
formulas (7), (8) converges to the extremal *u  of the functional ( )F u  on  . 

The proof of the theorem is given in [10]. 
Note that, in contrast to the LVM proposed in [7], the projection-iterative 

modification of this method allows one to significantly save computer time, 
since it does not require at each step to achieve complete convergence in h  
for fixed , x y . In addition, in practice, the final values , , x y h  are not 
known in advance, and it seems more expedient to use the stop criterion (4), 
which also allows one to significantly reduce the counting time, ensuring the 
given accuracy of the solution. 

It should also be noted that, in contrast to the LVM modification 
described in [5] and using the LVM scheme with a variable variation 
step [7], the projection-iterative modification of the LVM is simpler to 
implement and requires significantly less computation time on a PC, 
which does not affect on the quality of the solution [1, 2, 10]. 

 
Local stability of spherical shells 

Let us consider the application of the proposed LVM-modification to 
the problems of local stability of spherical shells under a substantially 
inhomogeneous stress state caused by local edge loading. These tasks are 
important for the construction of space rocket, antenna technology, etc. 
[4, 11]. Local loading is carried out through dies, the behavior of which 
is described by different models (Winkler, Vlasov, Muravsky, etc.), and 
is perceived by a force ring that reinforces the edge of the shell. Such a 
load transfer scheme simulates the transverse loading of the spherical 
diaphragms of the extended shell structures of rocketry, mirror antennas, 
and radiant energy concentrators. 

 

  
 

а b c d 

Fig. 1. The loading scheme (a), the waveforms (b, c) 
and type of experimental apparatus (d) 
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In Fig. 1 shows the loading schemes, the waveforms of local 
buckling, and the type of experimental apparatus. 

Contact pressure is variable along the contact areas at various degrees 
of its localization, which depends on the size of the contact areas, the 
parameters of the stiffness of the dies and design. This determines the 
form of wave formation. In Fig. 1a,b for a small contact area – one dent, 
in Fig. 1,a,c for an extended area – two dents (in this case, the contact 
pressure is concentrated in the edge zones of the dies). For hard dies, a 
contact breakdown can occur (the shell and the ring move away from the 
stamp) with the formation of discrete contact pads of various lengths. 
Fig. 1b,c show the tested shells made of aluminum-magnesium alloy 
AMG6M, manufactured by explosive stamping (with monitoring the 
deviation of the shell surface from spherical). In Fig. 1d shows a 
developed device that allows testing shells under loading by different 
stamp systems for various local loading schemes (including the scheme 
shown in Fig. 1a). 

We point out that in the theoretical consideration of contact 
interaction, it is necessary to solve a peculiar “double” contact problem: 
for a shell and a ring with a determination of the forces of their 
interaction and a ring loaded with these forces with a stamp. Methods for 
solving such problems were developed in [4, 11]. 

To describe the behavior of spherical shells, we use the relations of the 
nonlinear theory of shallow shells [6]. The system of equations defining the 
critical loads of the shells is equivalent to the variational equation 
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where Э is the potential energy of deformation of the shell; sin B r , 

 21  K Eh ,  3 212 1  D Eh ; h  is shell thickness; S is the 
surface of the shell;   is Poisson’s ratio; E  is elastic modulus; ijT  is 
efforts; ij  is deformation; ij  is curvature;  ,   are the coordinates. 

Based on the proposed computational algorithm for the projection-
iterative modification of the LVM, a calculation program for the PC was 
developed. The problem of loading a spherical shell reinforced by a ring 
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with two identical dies with different coverage angles is investigated. In 

the calculations, a critical parameter  
2

* *
P Eh  was determined 

depending on the stiffness parameter of the system 
 

  S
41 7sin 10ki EIE R  and S  (

*
P  is the critical force of stability loss; 

E , 
kE  are the elastic modulus of the shell and ring; S  is the spherical 

coordinate of the edge of the shell; R  is the radius of the shell; I  is the 
moment of inertia of the ring). 

In Fig. 2a shows the calculated dependence 1*  on the parameter i  for 
a given s  (S =50o). In Fig. 2b dependence 2*  on S  for a given i  
( i =5). The circles indicate the averaged values of the critical forces 
obtained in the experiment. In Fig. 2a, the results for 25 are averaged, in 
Fig. 2b for 14 trials. The ranges of the parameters of the tested shells 

 400 800R h ,    o40 60
S

,  2,5 9i . The shells were loaded with 

two identical dies of short length (Fig. 1a). 
High-speed filming showed that with a loss of stability, local dents 

initially have a circular shape, which in the experiment performed turned 
into an elliptical shape (such shapes are shown in Fig. 1). 

We point out the possibility of considering optimization problems of 
choosing design parameters and dies that minimize critical load. This is 
done when constructing the calculated dependence * for the indicated 
parameters (for the Winkler model, such a parameter characterizing the 
stiffness properties of loading dies is the bed coefficient). 

The refinement of the calculation algorithm by applying the 
projection-iterative modification of the LVM led to a decrease in the 
estimated time by 4–5 times in the calculation of critical forces. This was 
noted in [1, 2]. 

 
Fig. 2. The calculated dependences of critical parameters on the stiffness 

parameter of the support ring (a) and the spherical coordinate 
of the edge of the spherical shell (b) and averaged critical effort values 
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CONCLUSIONS 
The projection-iterative modification of the local variations method is 

especially effective for problems in which the introduction of a grid with 
a variable step is advisable. Such problems in the mechanics of a 
deformable solid include those in which a local stress concentration takes 
place. Important for priority branches of technology (rocket and space, 
antenna technology, etc.) are the problems of stability of shells under 
local loading. The features of such problems are shown by the example 
of the stability of spherical shells under local edge loading by dies, 
implemented through a force ring. The shape of the wave formation of 
the shell in this case is local in the zone of maximum stresses and 
depends on the structural and stiffness parameters of the system. The 
task in this case is to minimize the functional, which depends on the 
efforts of the subcritical stress-strain state of the shell and is replaced by 
the sum of the steps of the grid, which is automatically condensed in the 
stress concentration zone. 

The developed projection-iterative modifications of the method of local 
variations allow significantly (for the problems considered, 4–5 times) to 
reduce the time of computer calculations.  The values of the critical forces 
and the configurations of the stability waveforms obtained in the calculation 
are confirmed by the results of experimental data. 

 
SUMMARY  
Projection-iterative modification of the local variations method for 

solving variational problem with a quadratic functional is proposed. The 
convergence theorem is formulated. Application of the proposed 
modification to the problems of local stability of spherical shells under a 
substantially inhomogeneous stress state, which is caused by local edge 
loading, is considered. These tasks are important for the construction of 
space rocket, antenna technology, etc. 

The developed projection-iterative modifications of the local 
variations method are effective and can significantly (more than 4 times) 
reduce the time of computer calculations. Numerical results are 
confirmed by experimental data. 
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