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INTRODUCTION 
The unique combination of mechanical properties of composite 

materials allows them to find new applications in various industries: 
energy, aerospace, construction, transportation, etc. So, one of the 
branches where they are used is the use of composite materials in the 
creation of conveyor belts, escalators, conveyor belts, sports and 
transport road surfaces. 

The determination of the stress-strain state of such construction faces 
a number of mathematical and computational difficulties. Thus, the 
presence of composite material, which is heterogeneous in its structure, 
complicates the mathematical model of construction, which must take 
into account the presence of a large number of reinforcing elements. In 
addition, the described construction consists of elements with a specific 
geometric shape and sizes. These are usually confined strips or very long 
lengths that can be considered infinite. In the course of operation, such 
constructions test the load in the local area, which is considerably 
inferior in sizes to the length of the construction. Therefore, infinite-size 
modeling is an important problem in solving practical problems. 

The finite element method was applied for research of infinite areas 
in one-dimensional and two-dimensional formulations. Application of 
infinite finite element with use of ANSYS for solving dynamic problem 
is shown in one- and two-dimensional cases [1]. Improving of 
calculation accuracy by use of special approximating functions for 
infinite finite element is proposed in the article [2]. Research of infinite 
two-dimensional medium with infinite finite element is described in the 
monography [3]. In the article [4] solving of static problems for infinite 
areas through infinite finite elements is represented. Analysis of 
underground excavations for unlimited areas based on infinite element 
method is shown in [5]. Construction of the stiffness matrix of infinite 
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finite element for isotropic weak elastic material is developed in three-
dimensional case [6]. 

 
Methods 

To model an infinite environment in one direction from a fibrous 
composite material, we use a hexagonal spatial finite element. 

The origin of the coordinate system of a finite element we place in the 
center of the cube, and the axis we arrange so that they are parallel to the 
edges of the finite element and the 3x  axis would correspond to an 
infinite direction (Fig. 1). 

We introduce two local coordinate systems: a local finite element 
coordinate system and a local reinforcement system. Reinforcement is 
performed in the 

2 3xOx  plane. The coordinate system of finite element 
1 2 3Ox x x  and the coordinate system of reinforcement 

1 2 3
 Ox x x  are 

connected with the angle α, which determines the fiber stacking direction 
relative to the axis 

2x  (Fig. 1). 
 

 
Fig. 1. The “infinite” finite element for fiber composite material 

 
Using special approximation functions, we model infinity in the 

global Cartesian coordinate system  1 2 3
  Oz z z . We select special 

approximating functions so that the nodes 5*, 6*, 7*, 8* are displayed on 
the infinity in the direction of the axis 3

z . 
We construct the stiffness matrix of the “infinite” finite element on 

the basis of the variational principle of Lagrange: 
 

    W A ,                                          (1) 
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where   – the potential energy of the construction, W  – the energy of 
elastic deformation of the construction, A  – the work of external forces. 

We consider the variation of the energy of elastic deformation of a 
single finite element in a matrix form: 

 
        

T ijkl

ij kl

V

W C dV ,                        (2) 

 
where    11 12 13 21 22 23 31 32 33, , , , , , , ,          

T

kl  – the deformation 
vector,   

ijklC  – the matrix of elastic constants of material in the 
coordinate system of a finite element ix  

In the coordinate system of reinforcement, the composite material is 
homogeneous transtropic. The effective elastic properties of the 
transtropic material are determined by five mechanical characteristics: 

1 2,E E  – the elastic modulеs (longitudinal and transverse, respectively), 
12 23,G G  – the shear modulеs, and 12  – the Poisson coefficient. Here, the 

first direction is determined by the direction of reinforcement of fiber, 
and the second and the third determine the plane of isotropy of the 
material. Other elastic constants are defined as follows: 

 
2 2

21 12 23

1 23

, 1
2

     
E E

E G
, 

13 12 31 21 32 23, ,         , 

3 2 13 12, E E G G .                                           (3) 
 
The components of the tensor of elastic constants    i j k lC  for the 

transtropic environment in the coordinate system of reinforcement are 
determined by the following formulas [7]: 

 

   1 1 1 1 1 1 2 21 2
23 32 12 13 32* *

1 , ,
       

        
 

E E
C C

 
   1 1 3 3 2 2 1 13 1

13 12 23 21 31 23* *
, ,

       
         
 

E E
C C

 
   2 2 2 2 2 2 3 32 3

13 31 23 21 13* *
1 , ,

       
        
 

E E
C C
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   3 3 1 1 3 3 2 21 2
31 21 32 32 31 12* *

, ,
       

         
 

E E
C C

 
 3 3 3 3 3

21 12*
1 ,

   
   


E
C

 
1 2 1 2 1 3 1 3 2 3 2 312 13 23, , ,

2 2 2

           
  
G G G

C C C
 

 *

23 32 12 21 12 23 31 13 21 32 13 311 ,                                        (4) 
 

where 1 2 3, ,E E E  – the elastic modules in the respective directions of the 
reinforcement system, Gij – the shear modules of the transtropic material, 
vij – the Poisson coefficients. 

In solving spatial problems, they use effective elastic constants 
obtained from different theories. One of the simplest and most common 
groups of formulas is the mixtures rule [8]: 

 
 1 1 ,  c mE E f E f  

 
2 ,

1


 

c m

m c

E E
E

E f E f
 

 
12

1


 

c m

c m

GG
G

G f G f
, 

 
12 ,

1


 

c m

c m

GG
G

G f G f
 

 

   
23

1

1 1

   



    

m
m

c
m

m
m m

c

G
f f

G
G G

G
f f

G

, 

 12 1     c mf f ,                                            (5) 
 

where 3 4   m m , f  – the volumetric fiber content, , ,c c cE G  – the 
elastic modulus, the shear modulus and the Poisson coefficient of the 
fiber material, , ,m m mE G  – the elastic modulus, the shear modulus and 
the Poisson coefficient of the matrix material. 
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Another group of formulas was obtained by Abolin’sh D.S. [9]: 
 

 1 1  c mE E f E f , 

         
1

2 2
1 1 1


        m c

eE
E

f e f f ef f f e
, 

 

 
12

1 1

1 1

  


  
m

f g f
G G

f g f
, 

 
23

1


 
m

g
G G

f g f
, 

 12 1     c mf f ,                                      (6) 

where  c

m

E
e

E
,  c

m

G
g

G
. 

The formulas obtained by Vanin G.A. [10] have the following form: 
 

 1 1  c mE E f E f , 
   

     
12

1

1 1 2

    
   

      

m m c

m

c m

gf

f g f f
, 

     

 

 

1
2

12

2

1

2 11 1 2

8 1 1 2 1



     
  

          

  
  

  

m c

m c m m

g fg
E

E G f g f f f g f
, 

 

 
12

1 1

1 1

  


  
m

f g f
G G

f g f
, 

 

  23

1

1 1

   

   

m

m

m

f g f
G G

f g f
,                            (7) 

 
where 3 4   c c . 

For transformations of elastic constants    i j k lC  from the coordinate 
system of reinforcement into the coordinate system of a finite element 
we use the transformation tensor: 

 

 

0 cos sin

1 0 0

0 sin cos

  
 

  
 
    

.                             (8) 
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According to the moment scheme of a finite element, the 
approximation of displacements takes the form: 

 
     

T

k ij ku ,                                    (9) 

where                   000 100 010 110 001 101 011 111
, , , , , , ,                 k k k k k k k k k  –  

the vector of coefficients of decomposition,
   1 2 1 2 3 1 3 2 3 1 2 31, , , , , , , ij x x x x x x x x x x x x  – vector of power function. 

Deformation tensor we expand by power functions: 
 

    ij ij ije ,                                          (10) 

 
The decomposition coefficients ije  can be written through the 

displacement approximation coefficients  

pqr

k  as follows: 
 

   


 
 

 k
ij ij ke F .                                      (11) 

 
Considering the dependence (10), the variation of the elastic energy 

of deformation (2) will take the form: 
 

            
T T ijkl

ij ij kl kl

V

W e C e dV .               (12) 

 
The coordinates of an arbitrary point of construction can be 

represented by the coordinates of the nodes of the finite element and the 
shape function: 

 

   
8

1 2 3

1

, ,




L

m L m

L

z N x x x z                                    (13) 

 
where 

L

kz  – the k -th coordinate of the L -th node in the basic coordinate 
system (Fig. 1), 1,2,3 k , 1,2,...,8L ,    1 2 3, ,LN x x x  – the form functions 
of the L -th node, which for an infinite finite element will look like: 
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for nodes 1 – 4: 

       3
1 1 2 3 1 2

3

1 2
, , 1 1 ,

4 1
   



x
N x x x x x

x  
       3

2 1 2 3 1 2

3

1 2
, , 1 1 ,

4 1
   



x
N x x x x x

x  
       3

3 1 2 3 1 2

3

1 2
, , 1 1 ,

4 1
   



x
N x x x x x

x  
        3

4 1 2 3 1 2

3

1 2
, , 1 1 ,

4 1
   



x
N x x x x x

x
                    (14) 

 
for nodes 5 – 8: 

       3
5 1 2 3 1 2

3

1 2
, , 1 1 1 ,

4 1

 
    

 

x
N x x x x x

x
 

       3
1 2 3 1 26

3

1 2
, , 1 1 1 ,

4 1

 
    

 

x
N x x x x x

x
 

       3
7 1 2 3 1 2

3

1 2
, , 1 1 1 ,

4 1

 
    

 

x
N x x x x x

x
 

       3
8 1 2 3 1 2

3

1 2
, , 1 1 1 ,#

4 1

 
    

 

x
N x x x x x

x
       (15) 

where L

ix  – i -th coordinate of the L -th node in the coordinate system of 
finite element; 1,2,3i , 1,2,...,8L . 

According to the rules of the moment scheme, finally for 
deformations (10) we will have: 

             000 010 010 001 001 011 011

11 11 11 11 11       e e e e , 
             000 100 100 001 001 101 101

22 22 22 22 22       e e e e , 
             000 100 100 010 010 110 110

33 33 33 33 33       e e e e , 
     000 001 001

12 12 12   e e , 
     000 010 010

13 13 13   e e , 
     000 100 100

23 23 23   e e .                                   (16) 
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Here, the coefficients of decomposition of deformations will take the 
form: 

 
   

 
1

11 1

   

    


 
pqr

pqr k
k p q r

e f , 

   
 

1

22 1

   

    


 
pqr

pqr k
k p q r

e f , 

   
 

1

33 1

   

    


 
pqr

pqr k
k p q r

e f , 

   
 

 
  1 1

12 1 1

1

2

      

        


   
pqr

pqr k k
k kp q r p q r

e f f , 

   
 

 
  1 1

13 1 1

1

2

      

        


   
pqr

pqr k k
k kp q r p q r

e f f , 

   
 

 
  1 1

23 1 1

1

2

      

        


   
pqr

pqr k k
k kp q r p q r

e f f ,       (17) 

 
where 

 

 
     

1 2 3
1 2 3 0


 

     

  




  

k k

x x x

z
f

x x x
.                        (18) 

 
Considering these decomposition and relations (10) and (11), the 

variation of the energy of elastic deformation is written as follows: 
 

        

 
               

T TT k ijkl m

k ij ij kl kl m

V

W F C F dV               (19) 

 
or 

 
    

 
             

TT k ijkl m

k ij kl mW F H F                              (20) 
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where    
1 1 1

1 2 3

1 1 1  

          
Tijkl ijkl

ij klH C gdx dx dx  – the matrix of 

elastic constants of fibrous composite material taking into account the 
metric of infinite finite element. 

The displacements vector components in the global coordinate  
system are: 

 
  *

 
T

k L ku N u ,                                      (21) 
 

where                   61 2 3 4 5 7 8* , , , , , , ,        k k k k k k k k ku u u u u u u u u  – the vector of nodes 
displacement,    1 2 3 4 5 7 86, , , , , , ,LN N N N N N N N N  – the form function 
vector of the form: 
for nodes 1 – 4: 

 

          1 2 3 1 1 2 2 3 3

1
, , 1 1 ' ,

4
   L L

LN x x x x x x x N x
 

 
for nodes 5 – 8: 

 

          1 2 3 1 1 2 2 3 3

1
, , 1 1 " ,

4
  L L

LN x x x x x x x N x  

 
here   3 3' ,N x    3 3"N x  are chosen so that when the coordinate 3z  tend 
to infinity the displacements mu  would tend to 0. This imposes certain 
restrictions on the choice of global coordinates of the finite element, 
which must correspond to the local coordinates 

   3 3 3 3 3 31 2 / 2        M K M Kx z z z z z  (the values of M and K are taken in 
pairs from the values of    5,6,7,8M  and    1,2,3,4K ); the approximation 
of displacements is expanded in a series along this coordinate 

        2

0 1 2 1 1 2 3 2 1 2 3, , , ...    mu a x x a x x x a x x x  on condition 0 mu , if 

3 z . 
From relations (9) and (21), we define the elements of the matrix 

 A  so that the equality will be hold: 
 

    
   

T L
k kA u .                                       (22) 
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Considering (22) we can write for the variation of the energy of 
elastic deformation: 

 

    


 
 

  
T

L km L
mkW u K u .                                    (23) 

 
The last relation will determine the stiffness matrix of an infinite finite 

element based on the moment scheme for the fibrous composite material: 
 

                      


T Tkm k ijkl m
ij klK A F H F A .                          (24) 

 
Results 

The described stiffness matrix is implemented in the software 
package MIRELA + [11]. This complex solves the problem of indenting 
three stamps into a multilayered environment. Two cylindrical stamps 
(2) with a parabolic section are symmetrically relative to the axis of 
symmetry of a cylindrical stamp (1) with a circular section (Fig. 2). 

Initial data: the width of environment is 0.5b  m, the thickness of 
each of the three layers is 0.05  m, the total thickness is 0.15t  m, the 
length is infinite. The stamps are absolutely rigid. The material of the 
layers is a fiber composite with a volume fraction of fiber f . Elastic 
constants of the matrix material: the Poisson coefficient is 0.49 m ; the 
elastic modulus is 5.28mE  MPa. Elastic constants of the fiber material: 
the Poisson coefficient is 0.3 c , the elastic modulus is 

1277.5cE  MPa. 
The distance between the stamps is 0.4d  m. The stamps immersion 

into the environment to a depth of 0.04  m. The profile of the stamp 1 is 
described by the equation – 2 2 20.2 x z , for the stamp 2 – 2 2 x y z . 

 
Fig. 2. Contact interaction of stamps with multilayer environment 
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Two schemes of fiber reinforcement have been investigated. In the 
first, 90   for the lower and upper layers, 0   for the middle layer  
(  is the angle between the reinforcement direction and the Oy  axis in 
the Oyz  plane). In the second 0   for the lower and upper layers, 

90   for the middle layer. 
The maximum compressive stresses, depending on the volumetric 

fiber content in the composite, are shown in Figures 3 and 4. 
 

 
––– – the formula (5), - - - - – the formula (6), –·–·– – the formula (7) 

Fig. 3. Maximum compressive stresses 
for the first reinforcement scheme 

 

 
–––– – the formula (5), - - - - – the formula (6), –·–·– – the formula (7) 

Fig. 4. Maximum compressive stresses 
for the second reinforcement scheme 
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CONCLUSIONS 
The mixtures rule (5) for determining the effective elastic constants is 

quite inaccurate, especially when determining the transverse 
characteristics. Therefore, the magnitudes of the maximum compressive 
stresses are significantly different from the other two cases. When using 
formulas (6) and (7) the quality of representation is the same, formulas 
(7) give 6–8% higher values of stresses than formulas (6). The maximum 
stresses increase with increasing f because increasing the content of 
stiffer fibers increases the rigidity of the entire structure. The first 
reinforcement scheme gives 10 – 14% greater values of maximum 
compressive stresses than the second. 

 
SUMMARY 
The article investigates the stiffness matrix of infinite hexahedral 

finite element for fiber composite material based on the moment scheme. 
The unique combination of mechanical properties of composite 

materials allows them to find new applications in various industries: 
energy, aerospace, construction, transportation, etc. So, one of the 
branches where they are used is the use of composite materials in the 
creation of conveyor belts, escalators, conveyor belts, sports and 
transport road surfaces. 

Thus, the presence of composite material, which is heterogeneous in its 
structure, complicates the mathematical model of construction, which must 
take into account the presence of a large number of reinforcing elements. In 
addition, the described construction consists of elements with a specific 
geometric shape and sizes. These are usually confined strips or very long 
lengths that can be considered infinite. In the course of operation, such 
constructions test the load in the local area, which is considerably inferior in 
sizes to the length of the construction. Therefore, infinite-size modeling is an 
important problem in solving practical problems. 
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