Arthur, D., & Vassilvitskii, S. (2006). How slow is the k-means method? In SCG ’06: Proceedings of the twenty-second annual symposium on computational geometry. ACM Press. DOI: https://doi.org/10.1145/1137856.1137880
Artuhur, D., & Vassilvitskii, S. (2007). k-means++: The Advantages of Careful Seeding. Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 1027–1035. DOI: https://doi.org/10.1145/1283383.1283494
Bekkers, R., & Bodas Freitas, I. (2008). Analyzing knowledge transfer channels between universities and industry: To what degree do sectors also matter? Research Policy, 37(10), 1837–1853. DOI: https://doi.org/10.1016/j.respol.2008.07.007
Bell, D. (1973). The Coming of Post-industrial Society: A Venture of Social Forecasting. New York: Basic Books, 507 р. E-source: https://www.os3.nl/_media/2011-2012/daniel_bell_-_the_coming_of_post-industrial_society.pdf
Bottou, L., & Bengio, Y. (1995). Convergence properties of the k-means algorithm. Advances in Neural Information Processing Systems. E-source: https://pdfs.semanticscholar.org/2352/d9105de31032538900dfb2ce7c95f6402963.pdf
Carayannis, E., & Grigoroudis, E. (2016). Quadruple Innovation Helix and Smart Specialization: Knowledge Production and National Competitiveness. Foresight and STI Governance, 10/1, 31–42. DOI: https://doi.org/10.17323/1995-459x.2016.1.31.42
Castells, M. (1997). The Information Age: Economy, Society and Culture: The Power of Identity. Oxford: Blackwell. DOI: https://doi.org/10.1177/0739456X9901900212
Cosmulese, C. G., Grosu, V., Hlaciuc, E., & Zhavoronok, A. (2019). The Influences of the Digital Revolution on the Educational System of the EU Countries. Marketing and Management of Innovations, 3, 242–254. DOI: http://doi.org/10.21272/mmi.2019.3-18
Dubrov, A. M., Mxytaryan, V. S., & Troshyn, L. Y. (1998). Mnogomernуe statystycheskye metody [Multidimensional statistical methods]. Мoskva: Fynansy i statystyka. (in Russian)
Elkan, C. (2003). Using the triangle inequality to accelerate k-means. Proceedings of the Twentieth International Conference on Machine Learning, 3, 147–153. E-source: https://dl.acm.org/doi/10.5555/3041838.3041857
Har-Peled, S., & Sadri, B. (2005). How fast is the k-means method? SODA’05: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, 877–885, Philadelphia, PA, USA. DOI: https://doi.org/10.1007/s00453-004-1127-9
Hartigan, J. A., & Wong, M. A. (1979). A k-means clustering algorithm. Applied Statistics, 28, 100–108. DOI: https://doi.org/10.2307/2346830
Ivanov, Yu., & Tyshchenko, V. (2015). Public-private partnership potential in knowledge economy: regional aspect. Economic Annals-XXI, 3–4(1), 28–31. E-source: http://soskin.info/userfiles/file/2015/3-4_1_2015/Ivanov,%20Tyshchenko.pdf
Jain, A. J., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM Computing Surveys, 31/3, 264–323. DOI: https://doi.org/10.1145/331499.331504
Kanungo, Т., Mount, D. M., Netanyahu, N. S., Piatko C. D., Silverman R., & Wu A. Y. (2004). A local search approximation algorithm for k-means clustering. Comput. Geom, 28(2–3), 89–112. E-source: https://www.cs.umd.edu/~mount/Projects/KMeans/kmlocal-cgta.pdf
Kym, Dzh.-O. (1989). Faktornyj, dyskrymynantnyj y klasternyj analyz. [Factorial, discriminant and cluster analysis]. Мoskva: Finances and statistics.
Masuda, Y. (1983). The Information Society as Postindustrial Society. Washington: Word Future Soc., 45.
Pankaj, K. Agarwal, & Nabil H. Mustafa (2004). К-means projective clustering. PODS ’04: Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems. 155–165, New York, NY, USA. ACM Press. DOI: https://doi.org/10.1145/1055558.1055581
Porat, Mark U. (1977). The Digital economy. Nine volumes. Office of Telecommunication, US Department of Commerce. Washington.
Prokopenko, I. F., & Ganin, V. I. (2008). Metodyka i metodologiya ekonomichnogo analizu [Methodology and methodology of economic analysis]. Kyiv: Center for Educational Literature. (in Ukrainian)
Saaty, T. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation. McGraw-Hill. E-source: https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=1943982
Sculley, D. (2010). Web Scale K-Means Clustering. Proceedings of the 19th International Conference on World Wide Web. 1177–1178. DOI: https://doi.org/10.1145/1772690.1772862
Wu, X., & Kumar, V. (2009). The Top Ten Algorithms in Data Mining. Chapman & Hall. CRC. DOI: https://doi.org/10.1007/s10115-007-0114-2